Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
SHIP FOR CLEANING WATER SURFACE FROM OILY FILM / RU 02227785 C1 20040427/
Открыть
Описание
FIELD: shipbuilding; ships for gathering oil from water surface. SUBSTANCE: proposed ship is provided with oil suction unit made in form of metal shield with holes connected by slots; lower edge of said shield is provided with projection located at angle of 30-45 deg. relative to water surface; provision is made for pipe lines connected with holes in metal shield on one side and with pump (pumps) on other side, fastenings for securing the oil suction unit to ship's hull and for shifting it in vertical position, reservoir for oil, filter unit and pipe line for discharge of filtered water to water basin. EFFECT: enhanced efficiency. 2 dwg Подробнее
Дата
2020-12-06
Патентообладатели
Гаджиев Шарафутдин Мажлумович
Авторы
Гаджиев Ш.М.
Способ повышения несущей способности сваи по грунту / RU 02720595 C1 20200512/
Открыть
Описание
Изобретение относится к строительству и может быть использовано для повышения несущей способности свай по грунту в составе свайного фундамента зданий и сооружений различного назначения. Способ повышения несущей способности сваи по грунту включает создание искусственной шероховатости на наружной поверхности сваи путем равномерного нанесения и соединения с ней материала, формирующего шероховатость. Технический результат состоит в снижении трудоемкости изготовления сваи с повышенной несущей способностью по грунту путем создания равномерной шероховатости на наружной поверхности сваи, позволяющей увеличить зацепление частичек грунта с искусственно созданными неровностями на поверхности сваи. 3 з.п. ф-лы, 1 ил. Подробнее
Дата
2019-12-31
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Санкт-Петербургский государственный архитектурно-строительный университет"" "
Авторы
Бояринцев Андрей Владимирович , Ланько Сергей Владимирович
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СТОЙКОСТИ СТЕКЛОВОЛОКНИСТОЙ ИЛИ ПЛЕНОЧНОЙ ИЗОЛЯЦИИ ОБМОТОЧНЫХ ПРОВОДОВ К КОРОННЫМ РАЗРЯДАМ / RU 02723227 C1 20200609/
Открыть
Описание
Изобретение относится к испытаниям обмоточных проводов со стекловолокнистой или пленочной изоляцией. Сущность: устройство для определения стойкости стекловолокнистой или пленочной изоляции обмоточных проводов к коронным разрядам содержит термошкаф, внутри которого на противоположных боковых стенках выполнены направляющие. На направляющих горизонтально установлен металлический заземленный цилиндр для намотки образца провода. Диаметр цилиндра составляет не менее пяти диаметров образца провода по изоляции. Под цилиндром параллельно ему расположена горизонтальная планка из диэлектрического материала, которая зафиксирована на внутренних боковых стенках термошкафа. На планке закреплен зажим для крепления одного конца образца провода. В верхнюю часть термошкафа вставлен проходной керамический изолятор, один контакт которого предназначен для соединения со вторым концом образца провода. Второй контакт изолятора соединен с трансформатором, который заземлен. К источнику питания последовательно подключены автомат защиты, счетчик времени наработки, процессорный модуль и трансформатор. Технический результат: определение стойкости изоляции к коронным разрядам. 2 ил. Подробнее
Дата
2019-12-31
Патентообладатели
федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет»
Авторы
Леонов Андрей Петрович , Колесников Станислав Вячеславович , Чарков Дмитрий Игоревич , Редько Виталий Владимирович
СПОСОБ ЛЕЧЕНИЯ МАЛЯРИИ С ПОМОЩЬЮ ТЕРАПЕВТИЧЕСКОЙ КОМБИНАЦИИ ИНГИБИТОРОВ ТЕЛОМЕРАЗЫ (ИМАТИНИБА МЕЗИЛАТ) И АРТЕМЕТЕРА / RU 02722981 C1 20200605/
Открыть
Описание
Настоящее изобретение относится к областям фармакологии и медицины и может быть использовано для химиотерапии тропической малярии, вызванной возбудителем Plasmodium falciparum, особенно в случаях ее лекарственно устойчивых форм. Способ лечения малярии включает прием комбинации препаратов артеметера и иматиниба мезилата 1 раз в сутки в дозировках 0,33 мг/кг и 0,25 мг/кг соответственно в течение трех суток. Способ обеспечивает повышение эффективности химиотерапии малярии путем преодоления лекарственной устойчивости и снижения побочных эффектов от применяемых препаратов. 1 табл. Подробнее
Дата
2019-12-31
Патентообладатели
федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России
Авторы
Сергиев Владимир Петрович , Тарасов Вадим Владимирович , Морозова Лола Фармоновна , Турбабина Наталья Александровна , Степанова Екатерина Викторовна , Максимова Мария Сергеевна , Кондрашин Анатолий Викторович , Морозов Евгений Николаевич
НАНОАМОРФНАЯ ФОРМА (RS)-3-(4-АМИНО-1-ОКСО-1,3-ДИГИДРО-2Н-ИЗОИНДОЛ-2-ИЛ)ПИПЕРИДИН-2,6-ДИОН (ВАРИАНТЫ), СПОСОБ ЕЁ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ ДЛЯ ЛЕЧЕНИЯ ИММУНОЛОГИЧЕСКИХ ИЛИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ / RU 02723624 C1 20200616/
Открыть
Описание
Изобретение относится к наноаморфной форме (RS)-3-(4-амино-1-оксо-1,3-дигидро-2Н-изоиндол-2-ил)пиперидин-2,6-диона, способу ее получения и применению в фармацевтических композициях, которые могут быть использованы для лечения иммунологических и/или онкологических заболеваний. Аморфная форма (RS)-3-(4-амино-1-оксо-1,3-дигидро-2Н-изоиндол-2-ил)пиперидин-2,6-диона характеризуется средним размером частиц 63,85±10 нм, температурой стеклования 122,9°C±7°C, кристаллизацией при температуре 172,6±5°C с удельным тепловым эффектом 85,77±9 Дж/г и плавлением при температуре 267,5±5°C с удельным тепловым эффектом 149,8±15 Дж/г в условиях дифференциальной сканирующей калориметрии при скорости нагрева 10°C/мин. Способ получения аморфной формы (RS)-3-(4-амино-1-оксо-1,3-дигидро-2Н-изоиндол-2-ил)пиперидин-2,6-диона включает следующие стадии: загрузку (RS)-3-(4-амино-1-оксо-1,3-дигидро-2Н-изоиндол-2-ил)пиперидин-2,6-диона в расплав, состоящий из 40  или 20 г D-фруктозы, 15 или 7,5 глактозы моногидрата и 40 или 20 г мочевины при температуре 55°C; перемешивание при температуре 55°С; внесение полученного расплава в воду, охлажденную до +7°C; перемешивание; фильтрование осадка; приготовление суспензии осадка в воде; перемешивание при температуре 20°С в течение около 1 часа; фильтрование; промывание осадка водой на фильтре; высушивание до постоянной массы под вакуумом при температуре +40°C. Используемый на стадии загрузки в расплав (RS)-3-(4-амино-1-оксо-1,3-дигидро-2Н-изоиндол-2-ил)пиперидин-2,6-дион получают восстановлением 3-(4-нитро-1-оксо-1,3-дигидро-2H-изоиндол-2-ил)пиперидин-2,6-диона серым чугуном в виде колотой дроби в 50%-ном водном этаноле в присутствии соляной кислоты. Аморфная форма (RS)-3-(4-амино-1-оксо-1,3-дигидро-2Н-изоиндол-2-ил)пиперидин-2,6-диона предназначена для лечения иммунологических или онкологических заболеваний. 5 н. и 1 з.п. ф-лы, 10 ил., 11 пр. Подробнее
Дата
2019-12-31
Патентообладатели
Общество с ограниченной ответственностью «АксельФарм»
Авторы
Торчинов Георгий Юрьевич
Способ получения стирола / RU 02721773 C1 20200522/
Открыть
Описание
Изобретение относится к способу получения стирола путем парофазной дегидратации метилфенилкарбинолсодержащего сырья при повышенной температуре на катализаторе, содержащем окись алюминия в присутствии водяного пара при массовом соотношении пар: метилфенилкарбинол, равном (1,0-1,2):1,0 соответственно. Способ характеризуется тем, что дегидратацию в течение первых 50 часов проводят при величине разбавления пар: метилфенилкарбинол на 20-30% превышающей среднецикловую величину разбавления, после снижения конверсии метилфенилкарбинола менее 98% при величине разбавления пар: метилфенилкарбинол на 12-15% ниже среднецикловой величины разбавления. Применение изобретения позволяет увеличить межрегенерационный срок службы катализатора. 1 табл., 5 пр. Подробнее
Дата
2019-12-31
Патентообладатели
"Общество с ограниченной ответственностью ""Научно-производственное объединение ""ЕВРОХИМ"" "
Авторы
"Общество с ограниченной ответственностью ""Научно-производственное объединение ""ЕВРОХИМ"" "
СОЕДИНИТЕЛЬНЫЙ УЗЕЛ ШТУЦЕРНОГО МОДУЛЯ И ФОНТАННОЙ АРМАТУРЫ / RU 02723789 C1 20200617/
Открыть
Описание
Предлагаемое изобретение относится к нефтегазовой отрасли. В частности, к соединительному узлу для соединения втулок штуцерного модуля и фонтанной арматуры в оборудовании для подводной добычи углеводородов. Соединительный узел содержит: соединительную втулку штуцерного модуля и соединительную втулку фонтанной арматуры, которые содержат на своей наружной цилиндрической поверхности зубья, промежутки между которыми образуют шлицы; оправку, имеющую внутреннюю цилиндрическую поверхность, содержащую множество выступов, имеющих поперечное сечение по существу в виде сектора кольца и расположенных по окружности оправки, причем на верхней поверхности каждого из выступов с одного его края выполнена заходная фаска; выступы оправки выполнены с возможностью прохождения через шлицы соединительной втулки фонтанной арматуры с обеспечением контакта фасок выступов оправки с фасками зубьев соединительной втулки фонтанной арматуры при повороте оправки относительно продольной оси соединительных втулок. Техническим результатом является уменьшение габаритов, металлоемкости, упрощение конструкции соединительного узла, конструкция также обеспечивает возможность использования стандартного инструмента телеуправляемого необитаемого подводного аппарата и возможность использования как механического, так и гидравлического привода. 5 з.п. ф-лы, 10 ил. Подробнее
Дата
2019-12-31
Патентообладатели
"Общество с ограниченной ответственностью ""Газпром 335"" "
Авторы
Крылов Павел Валерьевич , Семенов Андрей Анатольевич , Левченко Иван Андреевич , Густов Дмитрий Сергеевич
УСТРОЙСТВО ДЛЯ ТЕРМОИМПЛОЗИОННОЙ ОБРАБОТКИ НЕФТЯНЫХ СКВАЖИН / RU 02721544 C1 20200520/
Открыть
Описание
Изобретение относится к устройствам для обработки продуктивного пласта и может быть использовано для повышения производительности нефтяных скважин. Устройство для термоимплозионной обработки нефтяных скважин включает воздушную камеру с атмосферным давлением и заглушку, состоящую из коаксиально расположенных переходника и корпуса сгораемого элемента. Переходник снабжен внутренним опорным элементом, разделяющим его на две части, в одной из частей на опорном элементе жестко закреплен корпус сгораемого элемента, снаряженный монолитным газогенерирующим при сгорании композиционным материалом, состоящим из смеси аммиачной селитры гранулированной марки Б, катализатора, горючего связующего включающего, мас.%: эпоксидную смолу марки ЭД-20-76; пластификатор марки ЭДОС - 8; агидол марки АФ-2М - 16, и воспламенитель, срабатывающий от электрической спирали. Внутренний опорный элемент переходника выполнен в виде кольца, жестко закрепленного на его поверхности, при этом часть, обращенная к воздушной камере, открыта, а газогенерирующий композиционный материал в качестве катализатора содержит феррат калия, при следующем соотношении компонентов, мас.%: аммиачная селитра гранулированная марки Б - 71,0-73,0; феррат калия - 1,0-3,0; горючее связующее - 24,0-28,0. Техническим результатом является повышение надежности и эффективности работы устройства за счет обеспечения его герметичности и стабильности процесса горения композиционного материала при упрощении его конструкции. 2 ил. Подробнее
Дата
2019-12-31
Патентообладатели
Садыков Марат Ильгизович
Авторы
Садыков Марат Ильгизович
СПОСОБ ОПРЕДЕЛЕНИЯ ИНДИВИДУАЛЬНОЙ АКТИВНОСТИ 131-ЙОДА ДЛЯ ПРОВЕДЕНИЯ РАДИОЙОДТЕРАПИИ ТИРЕОТОКСИКОЗА И ПРОГНОЗИРОВАНИЯ ВРЕМЕНИ ДОСТИЖЕНИЯ БЕЗОПАСНОГО УРОВНЯ АКТИВНОСТИ 131-ЙОДА В ОРГАНИЗМЕ ПАЦИЕНТА ПОСЛЕ ВВЕДЕНИЯ ИНДИВИДУАЛЬНОЙ АКТИВНОСТИ 131-ЙОДА / RU 02722568 C1 20200601/
Открыть
Описание
Группа изобретений относится к медицине, а именно к эндокринологии, радиологии, терапии, и может быть использована для определения индивидуальной активности 131-йода для проведения радиойодтерапии тиреотоксикоза, а также прогнозирования времени достижения безопасного уровня активности 131-йода в организме пациента после введения индивидуальной активности 131-йода. Способ определения индивидуальной активности 131-йода для проведения радиойодтерапии тиреотоксикоза включает определение объема участков (k) тироидной ткани (Vk, [мл]), удельного индекса тироидного захвата 99mTc-пертехнетата (I, [%]), распределения тироидного захвата 99mTc-пертехнетата по участкам ткани щитовидной железы (Rk, [%]), а также определение максимального и интегрального тироидного захвата 131-йода. Пациенту перорально вводят рабочий раствор объемом от 5 до 10 мл с содержанием активности (А0) 131-йода от 5 до 10 МБк. Далее на теле пациента размещают два дозиметра, выполненные с возможностью периодической регистрации мощности гамма-излучения до 2 мЗв/ч и автономной работы до 5 дней: первый - на уровне щитовидной железы, второй - на уровне мочевого пузыря. Регистрируют мощность гамма-излучения в непрерывном режиме в течение 2-5 суток, где j - номер дозиметра, p - номер зарегистрированного значения через определенный интервал времени из диапазона 2-15 минут, с сохранением зарегистрированных данных в памяти дозиметра. После чего данные значения переводят в значения активности 131-йода с получением массивов данных с последующим усреднением данных за каждый час измерений с получением массивов где i - номер часа после введения рабочего раствора. Далее определяют лечебную активность тироидной ткани : при удельном индексе тироидного захвата 99mTc-пертехнентата менее 0,5%/мл по формуле при удельном индексе тироидного захвата 99mTc-пертехнентата более 0,5%/мл - по формуле где - фактор накопления дозы, и в случае, если k=1, в качестве индивидуальной терапевтической активности 131-йода принимают минимальное значение из а в случае, если k>1, индивидуальную терапевтическую активность 131-йода определяют по формуле где MU - максимальный тироидный захват 131-йода, а UI - интегральный захват 131-йода, которые определяют по формулам: или по формулам: где - массив активности в камере «Щитовидная железа», ! полученный при обработке зарегистрированных данных массивов с применением четырехкамерной модели фармакокинетики 131-йода в организме пациента, учитывающей активности в каждый момент времени t в следующих камерах: «Тело», «Щитовидная железа», «Активность 131-йода, выведенная из тела через мочевой пузырь», «Убыль активности 131-йода в результате радиоактивного распада». Прогнозируют время достижения безопасного уровня активности 131-йода (Т) в организме пациента после введения индивидуальной активности 131-йода по формуле: ! где Ан - нормативная безопасность активности для населения, ! λэф. - постоянная эффективного выведения, определяемая аппроксимацией массива активностей в организме пациента моноэкспоненциальной функцией где является суммой активностей и активности в камере «Тело» Способ обеспечивает снижение риска возникновения рецидива тиреотоксикоза и повышает точность прогноза времени достижения безопасного уровня активности в организме пациента за счет определения индивидуальной активности 131-йода для проведения радиойодтерапии с учетом индивидуальной фармакокинетики. 2 н. и 4 з.п. ф-лы, 7 ил., 6 пр. Подробнее
Дата
2019-12-31
Патентообладатели
"ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ""НАЦИОНАЛЬНЫЙ МЕДИЦИНСКИЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ЭНДОКРИНОЛОГИИ"" МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ "
Авторы
Румянцев Павел Олегович , Трухин Алексей Андреевич , Дедов Иван Иванович , Мельниченко Галина Афанасьевна , Мокрышева Наталья Георгиевна
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ МАГНИТНОГО ПОЛЯ В ПЕРЕХОДНОМ СЛОЕ В ОКРЕСТНОСТИ МЕРКУРИЯ / RU 02723701 C1 20200617/
Открыть
Описание
Изобретение относится к компьютерным и сетевым технологиям, а именно к технологиям, используемым для создания трехмерной картины одномоментного состояния магнитного поля в пространстве вокруг планеты Меркурий, обладающей собственным дипольным полем, с помощью магнитометра на борту космического аппарата, средств дальней космической связи и программного-аппаратного комплекса для проведения полуэмпирического и численного моделирования магнитного поля и плазмы. В процессе реализации способа формируют расчетную сетку с неравномерным шагом, что обеспечивает сокращение временных затрат на определение параметров магнитного поля Меркурия. Технический результат заключается в обеспечении повышения точности определения величины магнитного поля в переходном слое при снижении объемов используемых машинных ресурсов, необходимых для хранения данных по магнитному полю. 5 ил. Подробнее
Дата
2019-12-31
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Московский государственный университет имени М.В. Ломоносова"" "
Авторы
Алексеев Игорь Иванович , Парунакян Давид Алексеевич , Лаврухин Александр Сергеевич
Способ и установка адсорбционной осушки и очистки природного газа / RU 02717052 C1 20200317/
Открыть
Описание
Изобретение относится к газопереработке и может быть использовано в газовой промышленности. Способ и установка адсорбционной осушки и очистки природного газа от серосодержащих компонентов после дожимной компрессорной станции перед подачей природного газа в магистральный газопровод включают циклически повторяющиеся стадию адсорбционной осушки и очистки природного газа, стадию регенерации адсорбента и стадию охлаждения адсорбента, при этом часть очищенного природного газа после использования на стадии охлаждения адсорбента подвергают рекуперативному теплообмену, нагреву в печи и далее используют в качестве газа регенерации на стадии регенерации адсорбента, после стадии регенерации адсорбента газ регенерации, содержащий десорбированные примеси, охлаждают в первом блоке адсорбционной осушки и очистки природного газа и направляют во второй дополнительный блок адсорбционной очистки газа регенерации, где циклически реализуют стадию адсорбции примесей, стадию регенерации адсорбента и стадию охлаждения адсорбента, при этом на стадии адсорбции примесей из газа регенерации первого блока адсорбционной осушки и очистки природного газа извлекают десорбированные примеси, очищенный газ регенерации возвращают на рецикл в очищаемый природный газ, а стадию регенерации адсорбента осуществляют горячим очищенным природным газом в две фазы: во время первой фазы газ регенерации с пиковым количеством десорбированных примесей сбрасывают на факел, во время второй фазы газ регенерации направляют на рецикл в очищаемый природный газ – в обоих случаях газ регенерации предварительно охлаждают и отделяют конденсат. Изобретение решает задачу разработки способа и установки адсорбционной осушки и очистки природного газа с уменьшением расхода природного газа, используемого для регенерации адсорбента, и увеличением таким образом выхода товарного природного газа. 2 н. и 12 з.п. ф-лы, 4 ил., 3 табл. Подробнее
Дата
2019-12-30
Патентообладатели
Мнушкин Игорь Анатольевич
Авторы
Мнушкин Игорь Анатольевич
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ, ИЗДЕЛИЕ ИЗ НЕГО И СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЯ / RU 02717437 C1 20200323/
Открыть
Описание
Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам системы алюминий-магний-кремний и изделиям из него. Cплав на основе алюминия содержит магний, кремний, марганец, медь, железо, титан и бор при следующем соотношении компонентов, мас. %: магний 0,45-0,50, кремний 0,55-0,62, марганец 0,04-0,10, медь до 0,02, железо до 0,22, титан до 0,05, бор до 0,03, алюминий и неизбежные примеси остальное при соблюдении соотношения Mg/Si = 0,72-0,91 и содержания избытка кремния в количестве 0,17-0,25 мас. % относительно стехиометрического соотношения фаз, определяемый по формуле: изб. Si = Si - (Mg/1,73) - ((Fe+Mn+Cu)/3), и способ производства прессованных изделий из алюминиевого сплава. Техническим результатом является получение прессованных изделий со стабильными повышенными механическими свойствами с сохранением коррозионной стойкости готовых изделий, повышение технологичности при прессовании. 3 н. и 1 з.п. ф-лы, 9 ил., 4 табл., 1 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"Общество с ограниченной ответственностью ""Объединенная Компания РУСАЛ Инженерно-технологический центр"" "
Авторы
Манн Виктор Христьянович , Крохин Александр Юрьевич , Вахромов Роман Олегович , Градобоев Александр Юрьевич , Рябов Дмитрий Константинович
Способ получения сферического гидроксилапатита с регулируемым гранулометрическим составом / RU 02717064 C1 20200317/
Открыть
Описание
Изобретение может быть использовано в аддитивных технологиях для формирования импланта костной ткани. Способ получения сферических гранул гидроксилапатита с регулируемым гранулометрическим составом включает приготовление смеси, содержащей 11-15 мас.% нитрата кальция, 5-9 мас.% гидрофосфата аммония и воду – остальное. Путем добавления водного раствора гидроксида аммония доводят значение рН смеси до 10-12. Смесь выдерживают в автоклаве при давлении 150-200 атм и температуре 200-250°С в течение 1-1,5 ч. Промывают осадок до нейтрального рН. Осадок сушат в разреженной атмосфере при давлении не более 10-5 мм рт.ст. и температуре не более -55°С. Готовят суспензию, состоящую из 25-27 мас.% этилового спирта, 68-70 мас.% воды и сухого осадка – остальное. Суспензию обрабатывают ультразвуком в течение не менее 5 минут при мощности не менее 200 Вт. Проводят грануляцию с использованием распылительной сушки при температуре в рабочей камере 200-220°С и скорости подачи суспензии 13-15 мл/мин с последующим сбором сферических гранул с комплекса циклонных фильтров. Изобретение позволяет получить сферические гранулы гидроксилапатита с размером от 5 до 25 мкм. 6 ил., 2 табл., 3 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский технологический университет ""МИСиС"" "
Авторы
Чупрунов Константин Олегович , Юдин Андрей Григорьевич , Лейбо Денис Владимирович , Кузнецов Денис Валерьевич
Мельница / RU 02721526 C1 20200519/
Открыть
Описание
Изобретение относится к устройствам для тонкого измельчения руд и иных минеральных материалов и может быть использовано в металлургической, химической и других отраслях промышленности. Мельница содержит корпус с кольцевым выступом, чашеобразный ротор, установленный на валу соосно корпусу и выполненный с ситами и радиальными перегородками. Перфорированный цилиндр смонтирован концентрично корпусу и образует с его поверхностями и кольцевым выступом камеру для вывода готового продукт. Мельница также содержит чашеобразный ротор с радиальными перегородками, установленный соосно корпусу на полой оси, закрепленной на поворотном круге оппозитно ротору, установленному на валу с возможностью вращения в направлении, противоположном направлению вращения ротора, установленного на валу. Обеспечивается повышение производительности мельницы. 1 ил. Подробнее
Дата
2019-12-30
Патентообладатели
Федеральное государственное бюджетное образовательное учреждение высшего образования «Уральский государственный горный университет»
Авторы
Комиссаров Анатолий Павлович , Лагунова Юлия Андреевна , Шестаков Виктор Степанович , Бочков Владимир Сергеевич
СПОСОБ ВЕДЕНИЯ ПАЦИЕНТОВ С ХРОНИЧЕСКИМ ЛИМФОЛЕЙКОЗОМ В ПРОЦЕССЕ ПОЛИХИМИОТЕРАПИИ ПО СХЕМЕ FCR, НАПРАВЛЕННЫЙ НА ПРЕДОТВРАЩЕНИЕ КАРДИОТОКСИЧНОСТИ / RU 02722111 C1 20200526/
Открыть
Описание
Изобретение относится к медицине, а именно к терапии, кардиологии. гематологии, и может быть использовано для ведения пациентов с хроническим лимфолейкозом в процессе полихимиотерапии по схеме FCR, направленного на предотвращение кардиотоксичности. Проведят эхокардиографию ЭхоКГ, оценку глобальной продольной деформации GLS и определение уровня тропонина в биохимическом анализе крови. Перед назначением полихимиотерапии ПХТ по схеме FCR пациенту проводят 3D-ЭхоКГ и спекл-трекинг ЭхоКГ с определением GLS. В биохимическом анализе крови определяют высокочувствительный тропонин Т hscTnT. Если фракция выброса ФВ левого желудочка ниже нормы, то перед началом ПХТ назначают кардиопротективную терапию одним препаратом. После курса ПХТ проводят аналогичные исследования и осмотр пациента кардиологом: если диагностируют развитие кардиотоксичности, то к лечению добавляют второй кардиопротективный препарат. Выполняют аналогичные исследования и осмотр пациента кардиологом после каждого курса ПХТ. При отсутствии кардиотоксичности после курса ПХТ, проводят аналогичные исследования и осмотр пациента кардиологом 1 раз в 3 месяца. Для пациентов с исходно нормальной ФВ левого желудочка проводят аналогичные исследования после 3 курсов ПХТ: при снижении GLS>15% относительного исходного значения и приросте уровня hscTnT добавляют к лечению кардиопротективную терапию одним препаратом, выполняют аналогичные обследования и осмотр пациента кардиологом 1 раз в 3 месяца. При относительном снижении GLS≤15% после 3 курсов ПХТ проводят стресс-ЭхоКГ с добутамином для определения контрактильного резерва по GLS и при его отсутствии выполняют 3D-ЭхоКГ, спекл-трекинг ЭхоКГ с определением GLS 1 раз в 3 месяца и стресс-ЭхоКГ после завершения ПХТ. При относительном снижении GLS≤15% после 3 курсов ПХТ и наличии контрактильного резерва по GLS при стресс-ЭхоКГ пациенту выполняют 3D-ЭхоКГ, спекл-трекинг ЭхоКГ с определением GLS после завершения ПХТ. Способ обеспечивает возможность ведения пациентов с хроническим лимфолейкозом в процессе ПХТ по схеме FCR для предотвращения кардиотоксичности за счет четкого алгоритма интерпретации полученных в процессе мониторинга результатов и контроля за возникновением кардиотоксичности у пациентов в процессе химиотерапии по схеме FCR. 5 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Самарский государственный медицинский университет"" Министерства здравоохранения Российской Федерации "
Авторы
Давыдкин Игорь Леонидович , Кузьмина Татьяна Павловна , Золотовская Ирина Александровна , Терешина Ольга Владимировна , Шпигель Александр Семенович , Данилова Олеся Евгеньевна , Мордвинова Елизавета Владимировна
СПОСОБ ПОЛУЧЕНИЯ КУСКОВОГО СИЛИКАГЕЛЯ / RU 02723623 C1 20200616/
Открыть
Описание
Изобретение относится к способам получения технического кускового силикагеля. Способ получения кускового силикагеля включает смешивание раствора жидкого стекла с раствором серной кислоты при 15-25°C, гелирование раствора при температуре 15-30°C в течение 20-40 часов, измельчение, отмывку и термическую обработку. Согласно способу рН раствора, полученного при смешении растворов жидкого стекла и серной кислоты, находится в диапазоне 0-4. Силикагель обрабатывают водным раствором аммиака. Изобретение обеспечивает получение кускового силикагеля, характеризующегося удельной поверхностью 200-400 м2/г, влагопоглощением более 1 см3/г и гидролитической стабильностью. 1 табл., 3 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ ""ИНЖИНИРИНГОВЫЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ЦЕНТР"" , Утаганова Альфия Радифовна "
Авторы
Князев Алексей Сергеевич , Мазов Илья Николаевич , Мамонтов Григорий Владимирович , Вышегородцева Елена Васильевна , Савельева Анна Сергеевна , Утаганова Альфия Радифовна
Способ функционирования импульсно-доплеровской бортовой радиолокационной станции истребителя при воздействии по основному лепестку диаграммы направленности антенны помехи типа DRFM / RU 02724116 C1 20200622/
Открыть
Описание
Изобретение относится к области радиолокации и может быть использовано в импульсно-доплеровской бортовой радиолокационной станции (БРЛС) для селекции полезного сигнала, отраженного от воздушной цели-носителя станции радиотехнической разведки (РТР), и воздействия по основному лепестку диаграммы направленности антенны (ДНА) сигналоподобной помехи с модуляцией доплеровской частоты (СПМДЧ) типа DRFM (цифровая радичастотная память). Достигаемый технический результат - обеспечение селекции полезного сигнала, отраженного от воздушной цели - носителя станции РТР, и воздействие по основному лепестку ДНА СПМДЧ типа DRFM. Способ заключается в формировании первой пачки высокочастотной когерентной последовательности (ВКП) зондирующих импульсов (ЗИ), их усилении по мощности, излучении в направлении воздушной цели - носителя станции РТР совместно с СПМДЧ типа DRFM, приеме отраженных сигналов от воздушной цели - носителя станции РТР совместно с СПМДЧ типа DRFM, их усилении, преобразовании на промежуточные частоты, селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму с последующим их спектральным анализом на основе алгоритма быстрого преобразования Фурье, определении и запоминании ширины спектров отраженных сигналов от воздушной цели-носителя станции РТР и СПМДЧ типа DRFM, формировании и излучении в направлении воздушной цели – носителя станции РТР и СПМДЧ второй пачки ВКП ЗИ, приеме отраженных сигналов, их усилении, преобразовании на промежуточные частоты, их селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму, с последующим их спектральным анализом на основе алгоритма быстрого преобразования Фурье, определении и запоминании ширины спектров отраженных сигналов от воздушной цели – носителя станции РТР и СПМДЧ типа DRFM, сравнении величин ширины спектров отраженных сигналов и принятии решения по результатам сравнения о том, что данный спектр сигнала принадлежит его отражению непосредственно от воздушной цели - носителя станции РТР И СПМДЧ типа DRFM, на основе которого формируется отсчет доплеровской частоты полезного сигнала и осуществляется его индикация, или о том, что данный спектр сигнала обусловлен воздействием СПМДЧ типа DRFM по главному лепестку ДНА и ее индикация не осуществляется. 3 ил. Подробнее
Дата
2019-12-30
Патентообладатели
"Федеральное государственное казённое военное образовательное учреждение высшего образования ""Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова"" Министерства обороны Российской Федерации "
Авторы
Богданов Александр Викторович , Закомолдин Денис Викторович , Кочетов Игорь Вячеславович , Васильев Олег Валерьевич , Часовских Сергей Александрович , Царёв Олег Валерьевич , Якунина Гаяне Размиковна
Устройство для калибровки высокотемпературных термопар. / RU 02720819 C1 20200513/
Открыть
Описание
Изобретение относится к термометрии и может быть использовано для калибровки высокотемпературных термоэлектрических преобразователей. Устройство для калибровки высокотемпературных термопар состоит из защитного чехла из тугоплавкого материала с монтажным фланцем, термопар с керамическими изоляторами, блока-излучателя. Устройство расположено вертикально, защитный чехол герметично закрыт с рабочего конца заглушкой, внутри защитного чехла коаксиально установлена несущая трубка с закрепленными на ней рабочими спаями термопар, несущая трубка с рабочего конца герметично заглушена пробкой-отражателем. Защитный чехол и несущая трубка имеют отверстия для заполнения инертным газом. Защитный чехол с несущей трубкой и закрепленными на ней термоэлементами термопар размещен в рабочей полости блока-излучателя, а блок-излучатель закреплен на составном электронагревателе. Со стороны блока-излучателя, противоположной его рабочей полости, выполнено отверстие для визирования пирометра. Техническим результатом является обеспечение калибровки как одной, двух, так и более трех высокотемпературных термопар, в т.ч. вольфрамрениевых, в диапазоне температур от 1000 до 2500°C. 1 з.п. ф-лы, 2 ил., 1 табл., 1 пр. Подробнее
Дата
2019-12-30
Патентообладатели
Общество с ограниченной ответственностью «Обнинская термоэлектрическая компания»
Авторы
Улановский Анатолий Александрович , Малецкий Роман Романович
СМЕСИТЕЛЬ СВЧ / RU 02723466 C1 20200611/
Открыть
Описание
Изобретение относится к радиотехнике. Техническим результатом заявленного решения является расширение рабочих диапазонов частот входного СВЧ-сигнала, сигнала гетеродина и сигнала ПЧ с обеспечением режима работы на нулевой ПЧ, а также повышение изоляции трактов гетеродин-сигнал и гетеродин-ПЧ. Смеситель содержит металлическое основание, с одной стороны которого установлена плата ответвителя Ланге, один из входов которого является входом СВЧ сигнала, другой вход является выходом сигнала промежуточной частоты (ПЧ), на другой стороне основания установлена плата делителя мощности, вход которого является входом сигнала гетеродина, выходы делителя мощности выполнены в виде емкостных разомкнутых шлейфов, возбуждающих ортогонально расположенные со стороны обратной металлизации платы делителя мощности щелевые резонаторы, пересекающих их перпендикулярно посередине их длины. Схема преобразования выполнена в виде двух двухдиодных балансных, относительно сигнала гетеродина, схем. Общие точки соединения диодов каждой схемы подключены к концам выходных линий ответвителя Ланге, другие выводы каждой пары диодов подключены к противоположным сторонам соответствующих щелевых резонаторов. 4 з.п. ф-лы, 7 ил. Подробнее
Дата
2019-12-30
Патентообладатели
"Акционерное общество ""Научно-производственная фирма ""Техноякс"" "
Авторы
Чиликов Александр Александрович , Щитов Аркадий Максимович
СПОСОБ ДОСТАВКИ НА ТОЧЕЧНУЮ ЦЕЛЬ ИЗЛУЧЕНИЯ ЛАЗЕРНОГО ДАЛЬНОМЕРА / RU 02724240 C1 20200622/
Открыть
Описание
Изобретение относится к области квантовой электроники и измерительной техники. Способ доставки на точечную цель излучения лазерного дальномера основан на однозначной связи углов рефракции оптических лучей с соотношением температур воды на поверхности моря и воздуха в приводном слое атмосферы. С целью компенсации погрешности данных целеуказания от телевизионного канала из-за разной рефракции лучей телевизионного и лазерного каналов в атмосфере производят адаптивную корректировку данных целеуказания для лазерного дальномера, для чего рассчитывают спектральный показатель преломления воздуха на центральной рабочей длине волны телевизионного канала. Одновременно рассчитывают спектральный показатель преломления воздуха на центральной рабочей длине волны тепловизионного канала. Также рассчитывают спектральный показатель преломления воздуха на центральной рабочей длине волны лазерного канала, затем измеряют текущие значения температур воздуха в приводном слое атмосферы и воды на поверхности моря, вычисляют разность между измеренными температурами воздуха в приводном слое атмосферы и воды на поверхности моря. Далее измеряют угловую координату цели в вертикальной плоскости с помощью телевизионного канала и угловую координату цели в вертикальной плоскости с помощью тепловизионного канала, затем вычисляют их разность. Далее определяют значение угла нацеливания лазерного луча в вертикальной плоскости. В дальнейшем смещают лазерный луч на вычисленный угол в вертикальной плоскости. В заключение осуществляют посылку лазерного луча на цель. Технический результат - компенсация влияния оптической рефракции при наведении лазерного канала активно-пассивной оптико-электронной системы на точечную цель. 2 ил., 2 табл. Подробнее
Дата
2019-12-30
Патентообладатели
"Акционерное общество ""Корпорация космических систем специального назначения ""Комета"" "
Авторы
Иванов Александр Николаевич , Полуян Александр Петрович , Белоусов Юрий Иванович , Пантась Ярослав Сергеевич