Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГИДРИРОВАНИЯ ФУРФУРОЛА И ФУРФУРИЛОВОГО СПИРТА ДО 2-МЕТИЛФУРАНА / RU 02722837 C1 20200604/
Открыть
Описание
Изобретение относится к области разработки способов приготовления катализаторов селективного гидрирования фурфурола и/или фурфурилового спирта для получения 2-метилфурана. Описан способ приготовления катализатора гидрирования фурфурола и/или фурфурилового спирта, включающий смешение молибдата аммония, нитрата никеля, лимонной кислоты и дистиллированной воды. При этом смешение проводят при нагреве до 100°С до полного растворения компонентов с обеспечением мольного соотношения Ni/Mo от 0,1 до 0,5, мольное соотношение молибдена и никеля к количеству углерода в лимонной кислоте равно 1:1, полученным пропиточным раствором по влагоемкости пропитывают углеродный носитель - Сибунит, который затем сушат на воздухе при 100°С и прокаливают в токе Ar при 400°С, полученный композит охлаждают в токе Ar, восстанавливают при 600°С в токе водорода, повторно охлаждают и пассивируют 1% О2 в аргоне при комнатной температуре. Технический результат заключается в повышении активности и селективности катализатора и обеспечении получения 2-метилфурана с выходом свыше 90% при селективном гидрировании фурфурола и/или фурфурилового спирта. 2 ил., 3 табл., 7 пр. Подробнее
Дата
2019-12-27
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Новосибирский национальный исследовательский государственный университет"" "
Авторы
Яковлев Вадим Анатольевич , Смирнов Андрей Анатольевич , Шилов Иван Николаевич
ШИХТА И ЭЛЕКТРОПЕЧНОЙ АЛЮМИНОТЕРМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ФЕРРОБОРА С ЕЕ ИСПОЛЬЗОВАНИЕМ / RU 02719828 C1 20200423/
Открыть
Описание
Изобретение относится к металлургии и может быть использовано для получения ферробора электропечным алюминотермическим способом в наклоняющемся горне с периклазовой футеровкой. Предложена шихта при следующем соотношении компонентов, мас. %: кислота борная 21,4-23,0, ангидрид борный 12,8-13,2, окалина железная 18,9-19,0, окалина искусственная 11,5-12,1, порошок алюминия первичного 22,2-22,5, известь обожженная 9,8-10,8, концентрат плавиковошпатовый 0,43-0,46 и соль поваренная выварочная 0,86-0,92. Изобретение позволяет найти оптимальные соотношения по массе между компонентами шихты с обеспечением ее нормальной термичности, получить ферробор с низким содержанием фосфора, меди, кремния и углерода, а также обеспечить высокое извлечение бора в сплав. 2 н.п. ф-лы, 1 табл., 3 пр. Подробнее
Дата
2019-12-23
Патентообладатели
"Публичное акционерное общество ""Ключевский завод ферросплавов"" "
Авторы
Гильварг Сергей Игоревич , Кузьмин Николай Владимирович , Мальцев Юрий Борисович
Способ получения наноструктурного оксида кобальта на углеродном носителе / RU 02723558 C1 20200616/
Открыть
Описание
Изобретение может быть использовано для приготовления активной массы электрода с частицами оксида кобальта на углеродном носителе, используемого в химических источниках тока, суперконденсаторах, в качестве носителя для катализаторов реакций, протекающих в топливных элементах. Получение наноструктурного оксида кобальта СоО на углеродном носителе проводят в электрохимической ячейке с объединенным катодным и анодным пространством, заполненной водным электролитом, под действием постоянного электрического тока. На металлический катод в виде пластины, расположенный на дне электрохимической ячейки, помещают слой углеродной суспензии следующего состава, мас.%: N-метилпирролидон – 73, поливинилиденфторид – 2,6, углерод –24,4. Наливают на полученный слой углеродной суспензии водный раствор электролита, имеющего состав CoSO4·7H2O 100-500 г/л, NaCl 20 г/л, Н3ВО3 45 г/л или CoSO4 100-500 г/л, NaCl 20 г/л, Н3ВО3 45 г/л. Электроосаждение кобальта на углеродный носитель проводят при плотности тока 0,5-1,6 А/см2 относительно площади металлического катода при перемешивании углеродной суспензии с помощью магнитной мешалки. Изобретение позволяет получить частицы оксида кобальта на углеродном носителе с размером кристаллитов 2-50 нм при их равномерном распределении по поверхности углеродного носителя. 2 з.п. ф-лы, 3 ил., 2 табл., 10 пр. Подробнее
Дата
2019-12-20
Патентообладатели
Федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет»
Авторы
Мауэр Дмитрий Константинович , Новомлинский Иван Николаевич , Скибина Лилия Михайловна
ПРОВОЛОКА СВАРОЧНАЯ ИЗ ТИТАНОВЫХ СПЛАВОВ / RU 02721977 C1 20200525/
Открыть
Описание
Изобретение может быть использовано в производстве присадочных материалов для дуговой сварки в среде инертных газов высокопрочных (α+β) и псевдо-β-титановых сплавов, предназначенных для использования в качестве конструкционного высокопрочного высокотехнологичного материала для изготовления конструкций судостроительной, авиационной и космической техники, а также энергетических установок. Сварочная проволока содержит алюминий, ванадий, молибден, цирконий, хром и титан, а также ограниченное содержание примесей при следующем соотношении компонентов, мас.%: алюминий 3,5-4,5; ванадий 1,5-2,5; молибден 1,5-2,5; цирконий 1,0-2,0; хром 0,5-0,7; углерод не более 0,05; кислород не более 0,12; азот не более 0,03; водород не более 0,003; титан - остальное. Техническим результатом изобретения является повышение характеристик прочности металла шва (до 973 МПа) при сохранении характеристик пластичности. 3 табл. Подробнее
Дата
2019-12-17
Патентообладатели
Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации
Авторы
Орыщенко Алексей Сергеевич , Леонов Валерий Петрович , Михайлов Владимир Иванович , Сахаров Игорь Юрьевич , Кузнецов Сергей Васильевич , Баранова Светлана Борисовна , Попов Алексей Сергеевич , Нурутдинова Элина Геннадьевна
Жаропрочный деформируемый сплав на основе никеля с низким температурным коэффициентом линейного расширения и изделие, выполненное из него / RU 02721261 C1 20200518/
Открыть
Описание
Изобретение относится к области металлургии, а именно к жаропрочным деформируемым сплавам на основе никеля с низким коэффициентом линейного расширения. Жаропрочный деформируемый сплав на основе никеля, содержащий, мас. %: углерод 0,02-0,08, кобальт 18,0-25,0, железо 20,0-35,0, хром 0,3-1,2, вольфрам 0,05-2,0, молибден 0,05-2,0, тантал 0,1-2,0, алюминий 0,1-1,0, титан 1,5-2,7, ниобий 4,0-6,0, бор 0,003-0,020, лантан до 0,05, церий до 0,05, магний до 0,05, скандий до 0,05, кальций до 0,05, барий до 0,05, иттрий до 0,05, никель - остальное. Сплав характеризуется высокими значениями жаростойкости при температуре 600°С и технологичности. 2 н. и 1 з.п. ф-лы, 2 табл., 4 пр. Подробнее
Дата
2019-12-11
Патентообладатели
"Федеральное государственное унитарное предприятие ""Всероссийский научно-исследовательский институт авиационных материалов"" "
Авторы
Каблов Евгений Николаевич , Мин Павел Георгиевич , Овсепян Сергей Вячеславович , Ахмедзянов Максим Вадимович , Расторгуева Ольга Игоревна , Мазалов Иван Сергеевич
КОНСТРУКТИВНЫЙ УЗЕЛ КАМЕРЫ СГОРАНИЯ / RU 02720877 C1 20200513/
Открыть
Описание
Группа изобретений относится к конструктивному узлу камеры сгорания, нагревательному прибору транспортного средства, а также к способу приведения в действие оснащённого таким конструктивным узлом камеры сгорания нагревательного прибора транспортного средства. Конструктивный узел камеры сгорания для приводимого в действие посредством горючего материала нагревательного прибора транспортного средства, содержащий: корпус (14) камеры сгорания с днищем (18) камеры сгорания и вытянутой в направлении продольной оси (L) корпуса и окружающей продольную ось (L) корпуса периферийной стенкой (16) камеры сгорания, причём днище (18) камеры сгорания и периферийная стенка (16) камеры сгорания ограничивают камеру (20) сгорания, пористую испаряющую среду (60) на обращённой к камере (20) сгорания внутренней стороне периферийной стенки (16) камеры сгорания и/или днища (18) камеры сгорания, подающий трубопровод (62) для горючего материала для подачи жидкого горючего материала в пористую испаряющую среду (60), первую зону (50) горения с первым устройством (68) подачи воздуха для горения, присоединённую к днищу (18) камеры сгорания для подачи первичного воздуха (VP) для горения в камеру (20) сгорания, причём пористая испаряющая среда (60) расположена в первой зоне (50) горения, следующую в направлении продольной оси (L) корпуса за первой зоной (50) горения вторую зону (52) горения со вторым устройством (70) подачи воздуха для горения, присоединённую к периферийной стенке (16) камеры сгорания для подачи вторичного воздуха (VS) для горения с аксиальным зазором относительно первой зоны (50) горения в камеру (20) сгорания. Изобретение позволяет снизить содержание вредных веществ, в частности, доли оксида азота и доли оксида углерода, в возникающем при сгорании отработавшем газе. 3 н. и 5 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-12-06
Патентообладатели
ЭБЕРШПЕХЕР КЛАЙМИТ КОНТРОЛ СИСТЕМЗ ГМБХ УНД КО. КГ
Авторы
БЛАШКЕ, Вальтер , ХУМБУРГ, Михаель
Высокопрочная коррозионно-стойкая бесшовная труба из нефтепромыслового сортамента и способ ее получения / RU 02719212 C1 20200417/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству высокопрочных легированных коррозионно-стойких сталей, используемых для изготовления бесшовных насосно-компрессорных и обсадных труб, применяемых для нефте- и газодобычи, эксплуатирующихся в агрессивных средах, содержащих углекислый газ и сероводород, и работающих на большой глубине в условиях пониженных температур. Сталь содержит, мас.%: углерод не более 0,17, кремний 0,30-0,50, марганец не более 0,40, хром 4,5-5,5, молибден 0,30-0,90, ванадий 0,02-0,08, ниобий 0,02-0,08, алюминий 0,02-0,05, никель от 0,01 до 0,25, железо и неизбежные примеси - остальное, при этом в качестве неизбежных примесей она содержит не более 0,01 серы и не более 0,01 фосфора. Для компонентов стали выполняется условие: 25×Mn×S×Cr≤0,5, где S - абсолютная величина содержания серы, мас.%, Cr - абсолютная величина содержания хрома, мас.%, Mn - абсолютная величина содержания марганца, мас.%. Обеспечивается получение бесшовных труб, имеющих предел текучести от 552 до 862 МПа и обладающих требуемой коррозионной стойкостью. 2 н. и 4 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-12-04
Патентообладатели
"Акционерное общество ""Первоуральский новотрубный завод"" "
Авторы
Александров Сергей Владимирович , Лаев Константин Анатольевич , Щербаков Игорь Викторович , Девятерикова Наталья Анатольевна , Ошурков Георгий Леонидович , Харлашин Александр Николаевич
Горячекатаная бесшовная насосно-компрессорная труба повышенной эксплуатационной надежности для нефтепромыслового оборудования / RU 02719618 C1 20200421/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству горячекатаной бесшовной насосно-компрессорной трубы повышенной эксплуатационной надежности, используемой для нефтепромыслового оборудования для добычи обводненной нефти и высокоминерализированных пластовых вод, содержащих углекислый газ, сероводород, ионы хлора, а также механические частицы. Бесшовная насосно-компрессорная труба получена из трубной заготовки из хромсодержащей стали, имеющей следующий состав, мас.%: от 0,22 до 0,38 углерода, 0,45 или менее кремния, от 0,80 до 1,45 марганца, 0,020 или менее фосфора, 0,010 или менее серы, 0,10 или менее алюминия, от 0,3 до 1,1 хрома, 0,12 или менее азота, по меньшей мере один компонент, выбранный из группы: 0,11 или менее ванадия и 0,07 или менее ниобия, остальное - железо (Fe) и неизбежные примеси. Для компонентов стали выполняются соотношения: 0,6≤|С|+|Mn|/4+|Cr|/5≤0,9 и 0,07≤|V|+2x|Nb|≤0,14, где |С|, |Mn|, |Cr|, |V| и |Nb| - абсолютная величина содержания, мас.%, углерода, марганца, хрома, ванадия и ниобия. Сталь может дополнительно содержать по меньшей мере один из: 0,20 мас.% или менее никеля, 0,25 мас.% или менее меди и 0,10 мас.% или менее титана. Трубную заготовку подвергают прошивке, прокатке в непрерывном стане и высокотемпературной термомеханической обработке в редукционном стане при температуре 950-1075°С с коэффициентом вытяжки 1,2-2,2. Обеспечивается требуемый уровень прочности, повышенная коррозионная стойкость и эксплуатационная надежность. 3 з.п. ф-лы, 1 ил., 3 табл. Подробнее
Дата
2019-12-04
Патентообладатели
"Акционерное общество ""Первоуральский новотрубный завод"" "
Авторы
Павлов Александр Александрович , Родионова Ирина Гавриловна , Александров Сергей Владимирович , Лаев Константин Анатольевич , Щербаков Игорь Викторович , Девятерикова Наталья Анатольевна , Ошурков Георгий Леонидович , Рогова Ксения Владимировна
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ НА ПОВЕРХНОСТИ ДЕТАЛЕЙ ИЗ УГЛЕРОД-УГЛЕРОДНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ И ГРАФИТА / RU 02714978 C1 20200221/
Открыть
Описание
Изобретение относится к технологии нанесения жаростойких покрытий и может быть использовано для деталей, работающих в условиях износа и воздействия коррозионно-активных сред, а именно, для сопловых лопаток газотурбинных двигателей и элементов обшивки, подвергающихся воздействию высокоскоростных газовых потоков, резким сменам температуры, эрозии и коррозии при скорости набегающего потока диссоцированного воздуха в атмосфере выше 5-6 Махов. Способ получения защитного покрытия на поверхности деталей из углерод-углеродного композиционного материала включает формирование барьерного слоя и основного слоя покрытия. Барьерный слой формируют из кремния технической чистоты толщиной 30-70 мкм на предварительно подогретых до температуры 150-200°С деталях. Основной слой наносят из смеси тугоплавких соединений ZrB2-MoSi2-SiC. После нанесения основного слоя покрытия осуществляют двойной нагрев деталей в прессе горячего прессования под давлением 20 МПа до температуры сначала 1450°С и затем 1850-1900°С с выдержкой 15-20 минут при температуре каждого нагрева. Обеспечивается технология, позволяющая повысить температуру эксплуатации деталей с полученными покрытиями и длительность процесса работы за счет повышения адгезии к подложке и эффекта самозалечивания покрытия. 2 табл., 2 пр. Подробнее
Дата
2019-12-02
Патентообладатели
"Федеральное государственное унитарное предприятие ""Всероссийский научно-исследовательский и проектный институт тугоплавких металлов и твердых сплавов"" "
Авторы
Еремин Сергей Александрович , Синицын Дмитрий Юрьевич , Аникин Вячеслав Николаевич , Колесникова Анастасия Михайловна , Ванюшин Владислав Олегович , Швецов Алексей Анатольевич , Бардин Николай Григорьевич
Высокопрочный легированный антифрикционный чугун / RU 02720271 C1 20200428/
Открыть
Описание
Изобретение относится к металлургии, в частности к высокопрочным антифрикционным чугунам, и может использоваться для изготовления литых деталей цилиндропоршневой группы двигателей, работающих в условиях трения в газовых средах. Чугун содержит, мас. %: углерод 3,1-3,6; кремний 2,0-2,5; марганец 0,3-0,7; никель 2,0-3,6; молибден 1,2-2,5; медь 0,6-1,5; хром 0,02-0,06; магний 0,02-0,03; церий 0,03-0,05; ванадий 0,52-1,15; титан 0,03-0,22; барий 0,03-0,06; бор 0,01-0,03; цирконий 0,05-0,12; олово 0,002-0,005 и железо - остальное. Обеспечивается повышение коррозионной усталости в газовых средах, предельного режима работы при трении, износостойкости и антифрикционных свойств. 2 табл. Подробнее
Дата
2019-11-28
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Ярославский государственный технический университет"" ФГБОУВО ""ЯГТУ"" "
Авторы
Алов Виктор Анатольевич , Епархин Олег Модестович , Карпенко Михаил Иванович , Попков Александр Николаевич , Карпенко Валерий Михайлович , Дударева Мария Ивановна
СПОСОБ ИЗГОТОВЛЕНИЯ ОБРЕЗИНЕННЫХ РЕЗИСТИВНЫХ ЭЛЕКТРООБОГРЕВАТЕЛЕЙ ДЛЯ МОРСКОЙ ТЕХНИКИ / RU 02717102 C1 20200318/
Открыть
Описание
Изобретение относится к области электротермии, а именно к изготовлению плоских электронагревателей, поддерживающих в работоспособном состоянии различные морские, в том числе подводные устройства. Способ изготовления резистивных электрообогревателей включает изготовление двух изоляционных заготовок в виде пластин, выполненных из резиновой смеси, размещение в пресс-форме тепловыделяющего элемента между изоляционными слоями и заготовками и последующую двухэтапную вулканизацию собранного пакета. На первом этапе проводят подвулканизацию и подпрессовку одной пластины для придания ей формы короба, где размещают тепловыделяющий элемент, закрывают его второй пластиной и выполняют 3-5 ступенчатых подпрессовок, начиная с давления в 5 МПа, увеличивая каждый раз давление на 5 МПа, а по окончании цикла подпрессовок ведут вулканизацию в течение 30-35 минут. Используемая при этом резиновая смесь содержит в м.ч.: комбинацию синтетического изопренового и бутадиенового каучуков - 100,0, антиоксидант - 1,0-3,0, оксид цинка (ZnO) - 10,0, вулканизующую систему - 4,5-8,7, наполнитель (технический углерод) - 30,0-50,0, композицию из N,N-метафенилендиамина и связующих добавок - 1,0-3,0, органическую смолу - 1,0-3,0. Изобретение позволяет повысить надежность герметизации тепловыделяющего элемента. 1 з.п. ф-лы, 1 табл., 1 ил. Подробнее
Дата
2019-11-25
Патентообладатели
"Акционерное общество ""Научно-исследовательский институт резиновых покрытий и изделий"" "
Авторы
Акопян Леонид Артаваздович , Вакулов Павел Сергеевич , Маслов Николай Александрович , Порошенко Ирина Геннадьевна , Урусов Руслан Алимович , Мордвинцева Татьяна Леонидовна
Технологическая установка для нанесения наноуглеродных покрытий на поверхности медицинских изделий или их частей, обладающих антибактериальными и биосовместимыми свойствами / RU 02724277 C1 20200622/
Открыть
Описание
Группа изобретений относится к медицине и медицинской технике и раскрывает способ нанесения наноуглеродного покрытия на поверхность медицинского изделия. Способ характеризуется тем, что скрывает на основе углерода или углерода и серебра на медицинские имплантируемые устройства, размещаемые внутри тела пациента. Предложенный способ позволяет получить антибактериальное покрытие на поверхности медицинского изделия, обладающее высокой биосовместимостью, препятствующее образованию бактериальной биопленки на поверхности. 2 н. и 20 з.п. ф-лы, 3 пр. Подробнее
Дата
2019-11-22
Патентообладатели
"Общество с ограниченной ответственностью ""Научно-производственный центр БиоОртоТех"" "
Авторы
Стрелецкий Олег Андреевич
Способ осушения углекислого газа после регенерации синтетического цеолита при производстве жидкой двуокиси углерода высшего сорта из подземных источников / RU 02717063 C1 20200317/
Открыть
Описание
Изобретение предназначено для отраслей промышленности, использующих двуокись углерода высшего сорта, и может быть использовано при производстве жидкого диоксида углерода. Смесь природного углекислого газа и водяных паров поступает в газгольдер 1 при открытом вентиле 2. Из газгольдера при давлении 0,17 МПа и температуре 10°С через открытый вентиль 4 подается в адсорбер влаги 7 с синтетическим цеолитом марки КА-СО. В это время второй адсорбер 8 находится на регенерации. Закрыты вентили 3, 5, 9 – 11, 14, открыты вентили 4, 6, 12. Из адсорбера 7 осушенный газ всасывается двухступенчатым безмасляным углекислотным компрессором 15. После первой ступени сжатия газ с давлением 0,4 МПа и температурой 70°С поступает в промежуточный водяной холодильник 16, где охлаждается. Далее охлажденный углекислый газ при температуре 15 – 30°С всасывается второй ступенью компресса и сжимается до давления 1,75 МПа и температуры 120 – 130°С. Затем основная часть газа нагнетается в водяной холодильник 17, проходя который газ направляется на конденсацию, а небольшая часть 1,92 – 1,95% от расхода газа подается в адсорбер 8, через вентиль 6, для регенерации цеолита. Продолжительность регенерации в сутки составляет 0,92 – 1,1 часа. После регенерации и остывания цеолита в адсорбере 8, продолжительностью 2,8 – 3,12 часа, его включают в работу, а работающий до этого адсорбер 7 переключают на регенерацию. Углекислый газ и пары воды из регенерируемого адсорбера 8 при давлении 0,17 МПа при открытом вентиле 9 поступают в водяной холодильник 13, где охлаждаются до температуры 30 – 50°С и углекислый газ осушается. Далее при открытом вентиле 14 газ смешивается с осушенным углекислым газом после адсорбера при температуре смеси 10,5 – 11°С и всасывается первой ступенью компрессора 15. Изобретение позволяет увеличить производительности установки получения жидкой углекислоты из подземных источников при постоянных эксплуатационных затратах, что повлечет снижение себестоимости получаемой жидкой углекислоты. 1 ил, 3 пр. Подробнее
Дата
2019-11-21
Патентообладатели
Федеральное государственное бюджетное учреждение науки Научно-исследовательский геотехнологический центр Дальневосточного отделения Российской академии наук
Авторы
Иодис Валентин Алексеевич
РЕЖУЩИЙ ИНСТРУМЕНТ С АЛМАЗОПОДОБНЫМ ИЗНОСОСТОЙКИМ ПОКРЫТИЕМ / RU 02714558 C1 20200218/
Открыть
Описание
Изобретение относится к металлорежущему инструменту, в частности к фрезам и сменным режущим пластинам, используемым для фрезерования изделий из высокопрочных сталей и труднообрабатываемых материалов, а также для обработки алюминия. Режущий инструмент содержит рабочую часть с режущими кромками, образованными на пересечении передних и задних поверхностей. На рабочую часть нанесено износостойкое покрытие, имеющее неравномерную толщину, и в котором по меньшей мере один слой содержит фазу с алмазоподобным аморфным углеродом. При этом в каждом поперечном сечении передней поверхности вдоль каждой режущей кромки площадь сечения слоя, содержащего фазу с алмазоподобным аморфным углеродом, приходящаяся на один миллиметр длины режущей кромки, находится в диапазоне 1300-2700 мкм2 при содержании тетраэдрической фазы аморфного углерода в этом слое в диапазоне 85-90% его состава и его микротвердости в диапазоне 80-100 ГПа. Повышается работоспособность и стойкость режущего инструмента. 6 з.п. ф-лы, 4 ил. Подробнее
Дата
2019-11-11
Патентообладатели
"Общество с ограниченной ответственность ""СБОРНЫЕ КОНСТРУКЦИИ ИНСТРУМЕНТА, ФРЕЗЫ МОСКВИТИНА"" "
Авторы
Москвитин Александр Александрович , Москвитин Сергей Александрович , Колпаков Александр Яковлевич , Маслов Анатолий Иванович , Губанов Антон Евгеньевич
МАСЛОБЕНЗОСТОЙКАЯ МОРОЗОСТОЙКАЯ РЕЗИНОВАЯ СМЕСЬ С ПОВЫШЕННОЙ ТЕРМОСТОЙКОСТЬЮ / RU 02719809 C1 20200423/
Открыть
Описание
Изобретение относится к резинотехническому производству, в частности к резиновым смесям для изготовления морозостойких и маслобензостойких резинотехнических изделий с высокими физико-механическими свойствами и стойкостью к термическому старению, используемых в автомобильной, нефтедобывающей и нефтеперерабатывающей отраслях промышленности. Резиновая смесь включает, мас. ч.: каучук БНКС-18АМН - 100,0, СВМПЭ - 5,0-15,0, технический углерод марки N550 - 80,0, дибутилсебацинат - 20,0, оксид цинка - 5,0, 6PPD - 1,0, 4010 - 1,0, антиоксидант D - 4,0, стеариновую кислоту - 1,75, альтакс - 1,5, CZ - 1,5, дикумилпероксид - 2,0 и серу 1,0. Изобретение позволяет повысить стойкость к термическому старению в углеводородной среде и в воздухе, повысить физико-механические показатели, морозостойкость и износостойкость. 1 табл. Подробнее
Дата
2019-11-06
Патентообладатели
"Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр ""Якутский научный центр Сибирского отделения Российской академии наук"" "
Авторы
Шадринов Николай Викторович , Борисова Александра Афанасьевна , Халдеева Анна Романовна , Павлова Валерия Валерьевна , Антоев Карл Петрович , Соколова Марина Дмитриевна
Способ контроля структурного состояния алмазоподобных тонких пленок / RU 02723893 C1 20200618/
Открыть
Описание
Изобретение относится к технологии производства тонких алмазных пленок и может быть использовано для оперативного контроля структурного состояния (распределения sp2- и sp3-связей). Способ контроля структурного состояния алмазоподобных тонких пленок включает сканирование поверхности пленок зондом сканирующего зондового микроскопа в режиме туннельного тока, а геометрические параметры структурных объектов, представляющих собой совокупности токовых каналов, в которых атомы углерода с sp2-связями формируют графитовую фазу, и непроводящих алмазных фрагментов, сформированных атомами углерода с sp3-связями, определяются Фурье-анализом. 4 ил. Подробнее
Дата
2019-11-06
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Алтайский государственный университет"" "
Авторы
Плотников Владимир Александрович , Макаров Сергей Викторович
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ВЫСОКОПРОЧНОГО ПРОКАТА РАЗЛИЧНЫХ КЛАССОВ ПРОЧНОСТИ ИЗ ДВУХФАЗНОЙ ФЕРРИТНО-МАРТЕНСИТНОЙ СТАЛИ / RU 02718604 C1 20200408/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали, который может быть использован в автомобильной промышленности. Для повышения пластичности, а также расширения технологических возможностей для получения из стали одинакового химического состава проката различных классов прочности 780, 980 и 1180 способ включает нагрев заготовки, горячую прокатку, холодную прокатку и обработку в агрегате непрерывного отжига, причем заготовка получена из стали, содержащей следующие компоненты, мас.%: углерод 0,11-0,13, кремний 0,02-0,40, марганец 2,0-2,2, хром 0,25-0,40, молибден 0,10-0,30, ниобий 0,015-0,025, железо и неизбежные примеси - остальное, в агрегате непрерывного отжига осуществляют нагрев проката до температуры отжига, выдержку, замедленное охлаждение, ускоренное охлаждение до температуры начала перестаривания и перестаривание, при этом для получения проката класса прочности 780 нагрев ведут до 700-720°С, класса прочности 980 нагрев ведут до 770-790°С и класса прочности 1180 нагрев ведут до 730-750°С, а скорость движения проката в агрегате непрерывного отжига для классов прочности 780 и 1180 назначают в зависимости от толщины полос в соответствии с зависимостью V=(80-20h)±10, где V - скорость движения проката, м/мин, h - толщина проката, мм, 80 и 20 - эмпирические коэффициенты, м/мин, для проката класса прочности 980 - в соответствии с зависимостью V=(140-40h)±200, где V - скорость движения полосы, м/мин, h - толщина проката, мм, 140 и 40 - эмпирические коэффициенты, м/мин. 2 табл. Подробнее
Дата
2019-11-05
Патентообладатели
"Публичное акционерное общество ""Магнитогорский металлургический комбинат"" "
Авторы
Павлов Александр Александрович , Денисов Сергей Владимирович , Углов Владимир Александрович , Родионова Ирина Гавриловна , Бакланова Ольга Николаевна , Карамышева Наталия Анатольевна , Чиркина Ирина Николаевна , Телегин Вячеслав Евгеньевич , Лукьянчиков Дмитрий Юрьевич , Андреев Сергей Геннадьевич , Мастяев Антон Вячеславович
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАГОТОВОК ПОЛОЖИТЕЛЬНОГО ЭЛЕКТРОДА ЦИЛИНДРИЧЕСКИХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКОВ / RU 02716277 C1 20200311/
Открыть
Описание
Изобретение относится к области электротехники, а именно к способу изготовления положительных электродов первичных химических источников тока. Способ изготовления заготовок положительного электрода цилиндрических химических источников токов включает в себя подготовку брикетов активной массы из смеси двуокиси марганца, углерода технического и фторопластовой суспензии, выдержку брикетов активной массы в бензине-растворителе, прокатку брикетов в ленту на формовочных валках при подаче потока сжатого воздуха, вырубку, выдержку контрольного образца в электрошкафу в пределах 5-10 минут при температуре 100-140°С, а также взвешивание массы, измерение ширины и толщины ленты активной массы контрольного образца, сравнение с заданными параметрами, намотку ленты активной массы на шпулю для формирования бобины с лентой активной массы, выдержку бобины в вытяжном шкафу не менее 18 часов, формовку бобины электродной ленты двух лент активной массы и металлической ленты между ними на формовочных валках, накатку электродной ленты, контроль толщины заготовок, резку заготовок электрода, контроль толщины заготовок, сушку заготовок электрода при температуре 110-150°С, термообработку заготовок при температуре 200-240°С, вырубку заготовок электрода. Повышение плотности активной массы положительного электрода при сохранении заданных электрических и механических характеристик является техническим результатом предложенного способа. Подробнее
Дата
2019-11-05
Патентообладатели
"Акционерное общество ""Литий-Элемент"" "
Авторы
Папикян Роман Петросович , Новокрещёнов Леонид Александрович , Гришин Сергей Владимирович , Шаронов Александр Петрович , Земсков Игорь Юрьевич
ПРОВОЛОКА СВАРОЧНАЯ ИЗ ТИТАНОВЫХ СПЛАВОВ / RU 02721976 C1 20200525/
Открыть
Описание
Изобретение может быть использовано в производстве присадочных материалов для дуговой сварки в среде инертных газов высокопрочных (α+β) и псевдо-β-титановых сплавов, предназначенных для использования в качестве конструкционного высокопрочного высокотехнологичного материала. Сварочная проволока содержит, мас. %: алюминий 3,0-4,0; ванадий 0,2-1,2; молибден 0,2-1,2; цирконий 1,0-2,0; хром 0,2-1,2; ниобий 0,2-1,2; кислород - не более 0,12; углерод - не более 0,03; азот - не более 0,03; водород - не более 0,003; титан - остальное. Сварочная проволока обеспечивает получение сварных соединений с высокими характеристиками прочности (до 1010 МПа) при сохранении характеристик пластичности. 4 табл., 1 пр. Подробнее
Дата
2019-11-05
Патентообладатели
Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации
Авторы
Орыщенко Алексей Сергеевич , Леонов Валерий Петрович , Михайлов Владимир Иванович , Сахаров Игорь Юрьевич , Грошев Андрей Леонидович , Кузнецов Сергей Васильевич , Баранова Светлана Борисовна
ВЫСОКОАКТИВНЫЙ КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ АЛКАНОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ / RU 02724902 C1 20200626/
Открыть
Описание
Настоящее изобретение раскрывает новый способ получения высокоактивного и селективного катализатора дегидрирования, катализатор, полученный указанным способом, и способ дегидрирования алканов, который включает введение в контакт потока исходного материала, содержащего легкие парафины или смесь парафинов и разбавителей, с катализатором, причем соотношение алкана и разбавителя составляет от 1:0,1 до 1:10. Способ получения катализатора дегидрирования алкана включает: (a) мокрое измельчение углеродистого материала с получением пасты измельченного углеродистого материала; (b) добавление оксида алюминия в раствор органической кислоты при перемешивании в течение от 15 до 20 минут с получением геля оксида алюминия и старение геля в течение от 15 до 20 минут; (c) получение водного раствора солей металлов группы IA и группы VIB с применением подходящих солей металлов; (d) добавление пасты измельченного углеродистого материала, полученной на стадии (a), и водного раствора солей металлов, полученного на стадии (c), в гель оксида алюминия, полученный на стадии (b), с получением гомогенной суспензии катализатора; (e) высушивание суспензии катализатора, полученной на стадии (d), при температуре от 100 до 150°C в течение от 12 до 16 часов с получением сухого брикета катализатора; (f) дробление сухого брикета катализатора, полученного на стадии (e), и просеивание с получением частиц катализатора от 0,5 до 1,0 мм для эксплуатации в неподвижном слое и частиц от 20 до 200 мкм для эксплуатации в псевдоожиженном слое; (g) прокаливание частиц катализатора, полученных на стадии (f), при температуре от 600 до 650°C и нагревании со скоростью 2,0°C/мин в течение двух часов в присутствии воздуха; и (h) восстановление катализатора, полученного на стадии (g), в реакторе с неподвижным слоем/неподвижным псевдоожиженным слоем с применением газообразного водорода при температуре от 600 до 800°C и регулируемой скорости потока с получением конечного катализатора. Катализатор содержит: (i) от 0,01 до 20 мас.% металла группы VIB; (ii) от 0,001 до 5 мас.% металлов группы IA; (iii) необязательно от 0,001 до 5 мас.% металлов группы VIII и (iv) оксид алюминия, причем массовое процентное содержание определено по отношению к полной массе катализатора. Доступность активных центров и дисперсия оксидов металлов улучшены посредством добавления в ходе получения катализатора углеродистого материала, такого как кокс, полученный из угля, или нефтяной кокс, или любая другая форма углерода, и его сгорания в течение прокаливания. Технический результат - повышение активности и селективности в отношении легких олефинов. 3 н. и 9 з.п. ф-лы, 1 ил., 4 табл., 3 пр. Подробнее
Дата
2019-10-29
Патентообладатели
ИНДИЙСКАЯ НЕФТЯНАЯ КОРПОРАЦИЯ ЛИМИТЭД
Авторы
ДУСА, Хима Бинду , ТХАКУР, Рам Мохан , БХАТТАЧАРАЙЯ, Дебасис , МАЗУМДАР, Санджив Кумар , РАМАКУМАР, Санкара Сри Венката , ГУПТА, Камлеш