Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ, ИЗДЕЛИЕ ИЗ НЕГО И СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЯ / RU 02717437 C1 20200323/
Открыть
Описание
Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам системы алюминий-магний-кремний и изделиям из него. Cплав на основе алюминия содержит магний, кремний, марганец, медь, железо, титан и бор при следующем соотношении компонентов, мас. %: магний 0,45-0,50, кремний 0,55-0,62, марганец 0,04-0,10, медь до 0,02, железо до 0,22, титан до 0,05, бор до 0,03, алюминий и неизбежные примеси остальное при соблюдении соотношения Mg/Si = 0,72-0,91 и содержания избытка кремния в количестве 0,17-0,25 мас. % относительно стехиометрического соотношения фаз, определяемый по формуле: изб. Si = Si - (Mg/1,73) - ((Fe+Mn+Cu)/3), и способ производства прессованных изделий из алюминиевого сплава. Техническим результатом является получение прессованных изделий со стабильными повышенными механическими свойствами с сохранением коррозионной стойкости готовых изделий, повышение технологичности при прессовании. 3 н. и 1 з.п. ф-лы, 9 ил., 4 табл., 1 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"Общество с ограниченной ответственностью ""Объединенная Компания РУСАЛ Инженерно-технологический центр"" "
Авторы
Манн Виктор Христьянович , Крохин Александр Юрьевич , Вахромов Роман Олегович , Градобоев Александр Юрьевич , Рябов Дмитрий Константинович
Способ винтовой прокатки сплавов системы титан-цирконий-ниобий / RU 02717765 C1 20200325/
Открыть
Описание
Изобретение относится к термомеханической обработке титановых сплавов, а именно к созданию способа винтовой прокатки сплавов системы титан-цирконий-ниобий, и может быть использовано в качестве полупродукта для изготовления костных имплантатов. Способ винтовой прокатки сплавов системы титан-цирконий-ниобий заключается в том, что осуществляют многопроходную винтовую прокатку заготовки с промежуточными подогревами при углах подъема винтовых траекторий движения металла в очаге деформации 12-24°, при этом сочетают проходы с траекториями движения по правым винтовым линиям и проходы с траекториями движения по левым винтовым линиям, причем суммарная доля истинной деформации в проходах с траекториями движения металла по одному из видов винтовой линии не превышает 65% от общей истинной деформации. Увеличивается прочность и пластичность, а также повышаются служебные свойства сплавов системы титан-цирконий-ниобий, работающих в условиях долговременных скручивающих нагрузок переменного направления. 1 ил., 2 табл., 2 пр. Подробнее
Дата
2019-12-27
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский технологический университет ""МИСиС"" "
Авторы
Шереметьев Вадим Алексеевич , Прокошкин Сергей Дмитриевич , Браиловский Владимир Иосифович , Кудряшова Анастасия Александровна , Галкин Сергей Павлович
Сплав на основе титана и способ его обработки для создания внутрикостных имплантатов с повышенной биомеханической совместимостью с костной тканью / RU 02716928 C1 20200317/
Открыть
Описание
Изобретение относится к металлургии, а именно к биосовместимым сплавам с механическим поведением, близким к поведению костной ткани человека, и может быть использован для несущих конструкций медицинских внутрикостных имплантатов. Сверхупругий сплав на основе титана содержит, ат.%: цирконий 18-42, ниобий 8-15, титан остальное, при этом сплав имеет наносубзеренную структуру и высокотемпературную метастабильную β-фазу, находящуюся в предмартенситном состоянии. Способ термомеханической обработки сверхупругого сплава на основе титана включает гомогенизационный отжиг при 800-1000°С в течение 60-120 минут, холодную пластическую деформацию со степенью истинной деформации е=0,25-0,55, последеформационный отжиг при 500-600°С в течение 30-60 минут и охлаждение в воде. Сплав характеризуется высокой биосовместимостью с механическим поведением, близким к поведению костной ткани, а также высокой долговечностью. 2 н.п. ф-лы, 1 ил., 2 пр. Подробнее
Дата
2019-12-27
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский технологический университет ""МИСиС"" "
Авторы
Конопацкий Антон Сергеевич , Дубинский Сергей Михайлович , Шереметьев Вадим Алексеевич , Прокошкин Сергей Дмитриевич , Браиловский Владимир Иосифович
КАТАЛИЗАТОР ДЛЯ ГИДРОТЕРМАЛЬНОГО СЖИЖЕНИЯ БИОМАССЫ РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ / RU 02722305 C1 20200528/
Открыть
Описание
Изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив. Катализатор для гидротермального сжижения биомассы растительного происхождения содержит оксид циркония, оксид титана, оксид олова, оксид ванадия, фосфат алюминия, мелкодисперсный оксид алюминия при следующем соотношении компонентов, мас.%: оксид циркония 1,0-40,0; оксид титана 0,5-5,0; оксид олова 0,5-5,0; оксид ванадия 0,1-10,0; фосфат алюминия 1,0-5,0; мелкодисперсный оксид алюминия - остальное, до 100 в сульфатированной форме. Технический результат - обеспечение повышения активности катализатора по отношению к сероорганическим соединениям исходного сырья за счет перевода указанных соединений в водорастворимую форму. 4 пр. Подробнее
Дата
2019-12-24
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Российский государственный университет нефти и газа имени И.М. Губкина"" "
Авторы
Винокуров Владимир Арнольдович , Иванов Евгений Владимирович , Копицын Дмитрий Сергеевич , Новиков Андрей Александрович , Чудаков Ярослав Александрович , Петрова Дарья Андреевна , Котелев Михаил Сергеевич , Тиунов Иван Александрович , Колесников Иван Михайлович , Филатова Софья Валерьевна
СПОСОБ ЗАМЕЩЕНИЯ ДЕФЕКТОВ ДИСТАЛЬНОГО ОТДЕЛА БЕДРЕННОЙ КОСТИ ПРИ ВЫПОЛНЕНИИ ЭНДОПРОТЕЗИРОВАНИЯ КОЛЕННОГО СУСТАВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ / RU 02724490 C1 20200623/
Открыть
Описание
Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано при проведении операций первичного и ревизионного эндопротезирования коленного сустава при наличии массивных дефектов дистального отдела бедренной кости. На этапе предоперационного планирования выполняют посредством данных мультиспиральной компьютерной томографии построение трехмерной модели дистального отдела бедренной кости с дефектом и замещающего дефект аугмента посредством аддитивных технологий с использованием при необходимости КТ-изображений контрлатеральной бедренной кости, а также с учетом формы бедренного компонента эндопротеза и планируемого аугмента с их взаимным позиционированием. Определяют индивидуальную форму корпуса аугмента с учетом конфигурации костного дефекта. Планируют и намечают на 3D модели аугмента гладкие и пористые зоны его поверхности, планируют толщину его стенок, планируют посредством виртуальной реконструкции необходимые оси относительно костных ориентиров. Далее создают окончательный вариант аугмента, полностью компенсирующего имеющийся костный дефект и конгруэнтного прилегающей к нему поверхности бедренного компонента эндопротеза. На следующем этапе производят 3D печать пластикового прототипа аугмента и пластиковой модели дистального отдела бедренной кости с костным дефектом, а после примерки и подгонки посредством сглаживания краев костного дефекта для облегчения установки аугмента с учетом бедренного компонента эндопротеза. После его примерки с использованием бедренного компонента эндопротеза производят 3D печать аугмента из порошкового титана в полном соответствии с созданной 3D моделью. На этапе реконструктивной операции вначале устанавливают индивидуально спланированный аугмент в дефект дистального отдела бедренной кости, сглаживая при необходимости края костного дефекта и иссекая имеющуюся внутри рубцовую ткань. После достижения необходимой конгруэнтности устанавливают с использованием костного цемента под необходимым углом наклона и с учетом спланированных осей и анатомических ориентиров стандартный бедренный компонент эндопротеза по методике тугой посадки. Устройство для замещения дефектов дистального отдела бедренной кости для осуществления способа включает полый корпус, в персонифицированной форме изготовленный с использованием аддитивных технологий на основе трехмерного моделирования на этапе планирования оперативного вмешательства. Корпус выполнен по индивидуальному рельефу дистального отдела бедренной кости в соответствии с имеющимся дефектом. Внутренняя поверхность корпуса конгруэнтна ответной поверхности компонента эндопротеза. Наружная поверхность корпуса выполнена с индивидуально подобранными гладкими и пористыми зонами в зависимости от прилежания окружающих мягкотканных структур. Толщина стенок корпуса подобрана с учетом особенностей индивидуальной анатомии пациента и величины костного дефекта на этапе предоперационного планирования. Способ обеспечивает опороспособность и восстановление функции нижней конечности, а также полноценную опору для бедренного компонента эндопротеза коленного сустава и его прочную первичную фиксацию; точное восполнение дефекта костной ткани с воссозданием анатомической формы поврежденной бедренной кости за счет малой травматичности и сохранения максимально возможного объема пораженной бедренной кости. 2 н.п. ф-лы, 9 ил., 2 пр. Подробнее
Дата
2019-12-24
Патентообладатели
"федеральное государственное бюджетное учреждение ""Национальный медицинский исследовательский центр травматологии и ортопедии имени Р.Р. Вредена"" Министерства здравоохранения Российской Федерации "
Авторы
Коваленко Антон Николаевич , Каземирский Александр Викторович , Денисов Алексей Олегович , Билык Станислав Сергеевич , Черный Александр Андреевич , Корнилов Николай Николаевич , Куляба Тарас Андреевич
Способ получения объёмных наноструктурированных полуфабрикатов из сплавов с памятью формы на основе никелида титана (варианты) / RU 02717764 C1 20200325/
Открыть
Описание
Изобретение относится к металлургии, а именно к получению прутков из сплава с памятью формы на основе никелида титана (Ti-Ni), и может быть использовано при производстве объемных и длинномерных полуфабрикатов из сплавов на основе никелида титана с памятью формы. Способ получения объемных наноструктурированных прутков из сплавов с памятью формы на основе никелида титана включает равноканальное угловое прессование горячекатаной заготовки после закалки в интервале температур 700-800°С с охлаждением в воде. Равноканальное угловое прессование проводят в квазинепрерывном режиме в интервале температур 350-450°С за 5-7 проходов с углом пересечения каналов 110-120°, далее осуществляют последеформационный отжиг при температуре 350-450°С в течение 1-2 часов. После равноканального углового прессования может быть проведена ротационная ковка в интервале температур 350-400°С с единичными обжатиями 1-15% до требуемого конечного диаметра заготовки. Обеспечивается повышение механических и функциональных свойств полуфабрикатов из Ti-Ni путем формирования в них УМЗ структуры: смешанной нанокристаллической и наносубзеренной после РКУП и после деформационного отжига, смешанной наносубзеренной и субмикрокристаллической после равноканального углового прессования, ротационной ковки и последеформационного отжига. 2 н.п. ф-лы, 1 табл., 2 пр. Подробнее
Дата
2019-12-24
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский технологический университет ""МИСиС"" "
Авторы
Андреев Владимир Александрович , Юсупов Владимир Сабитович , Карелин Роман Дмитриевич , Прокошкин Сергей Дмитриевич , Хмелевская Ирина Юрьевна , Комаров Виктор Сергеевич , Перкас Михаил Маркович
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ОТОЖЖЕННОГО ЛИСТОВОГО ПРОКАТА ИЗ IF-СТАЛИ / RU 02721263 C1 20200518/
Открыть
Описание
Изобретение относится к области металлургии, а именно к способу производства холоднокатаного проката из сверхнизкоуглеродистых IF-сталей (Interstitial Free - сталь без атомов внедрения), который может быть использован в автомобильной промышленности. Для получения из стали проката с уровнем свойств, соответствующим сталям марок DC05, DC06 и DC07 по EN 10130, то есть создания кассетной технологии, при сохранении высоких показателей пластичности и штампуемости осуществляют выплавку стали, разливку, горячую прокатку, травление, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в колпаковой печи и дрессировку, при этом выплавляют сталь унифицированного химического состава, содержащую, мас.%: С - 0,002-0,006, Si - 0,005-0,020, Mn - 0,08-0,13, Al - 0,03-0,06, Ti - 0,03-0,08, Fe и неизбежные примеси - остальное, температуру конца горячей прокатки в черновой группе клетей непрерывного широкополосного стана назначают в соответствии с зависимостью Ткчп ≤ 830 [Ti]+1025, где Ткчп - температура конца прокатки, °С, [Ti] - содержание титана, мас.%, 830 и 1025 - эмпирические коэффициенты, температуру смотки горячекатаных полос назначают в соответствии с зависимостью Тсм=[15δТР +50]±15°С, где Тсм - температура смотки, °С, δТР - требуемая минимальная величина относительного удлинения, %, 15 и 50 - эмпирические коэффициенты, а температуру рекристаллизационного отжига в колпаковой печи назначают в соответствии с зависимостью Тотж=[5δТР +490]±10°С, где ТОТЖ - температура рекристаллизационного отжига, °С, δТР - требуемая минимальная величина относительного удлинения, %, 5 и 490 - эмпирические коэффициенты. 3 табл. Подробнее
Дата
2019-12-23
Патентообладатели
"Федеральное государственное унитарное предприятие ""Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина"" "
Авторы
Родионова Ирина Гавриловна , Карамышева Наталия Анатольевна , Зайцев Александр Иванович , Колдаев Антон Викторович , Краснянская Ирина Алексеевна
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ НИЗА ОБУВИ / RU 02717519 C1 20200323/
Открыть
Описание
Изобретение относится к полимерным композициям, предназначенным для изготовления подошв литьевого метода крепления, которые могут быть использованы при изготовлении обуви для активного отдыха, повседневной обуви осенне-весеннего и зимнего ассортимента для различных половозрастных групп. Композиция содержит, мас.ч.: 100 поливинилхлорида, 80-90 пластификатора диоктилтерефталата, 10-16 полиуретанакрилата на основе 2,4 толуилендиизоцианата и 2-гидроксиэтилметакрилата в соотношении 45:55, 7-9 наполнителя, 2-3 стабилизатора, 1-2 порообразователя азодикарбонамида, 0,6-0,7 диоксида титана, 0,5-0,7 полых полимерных микросфер с диаметром 30-90 мкм и истинной плотностью 200-400 кг/м3и 0,01-0,02 красителя. Техническим результатом изобретения является повышение экологической безопасности полимерной композиции, улучшение эксплуатационных свойств изготовленных из нее подошв, расширение ассортимента подошв на основе ПВХ. 2 табл. Подробнее
Дата
2019-12-20
Патентообладатели
Открытое акционерное общество ""Инновационный научно-производственный центр текстильной и легкой промышленности"" ", "Общество с ограниченной ответственностью ""ВетАнна""
Авторы
Назарова Тамара Петровна , Кленовская Наталья Викторовна , Баяндин Максим Валерьевич , Галушкина Татьяна Алексеевна , Небылица Елизавета Геннадьевна , Колесова Дарья Владимировна , Малашкин Александр Александрович , Говорущак Мария Николаевна , Кленовский Дмитрий Валерьевич
ПРОВОЛОКА СВАРОЧНАЯ ИЗ ТИТАНОВЫХ СПЛАВОВ / RU 02721977 C1 20200525/
Открыть
Описание
Изобретение может быть использовано в производстве присадочных материалов для дуговой сварки в среде инертных газов высокопрочных (α+β) и псевдо-β-титановых сплавов, предназначенных для использования в качестве конструкционного высокопрочного высокотехнологичного материала для изготовления конструкций судостроительной, авиационной и космической техники, а также энергетических установок. Сварочная проволока содержит алюминий, ванадий, молибден, цирконий, хром и титан, а также ограниченное содержание примесей при следующем соотношении компонентов, мас.%: алюминий 3,5-4,5; ванадий 1,5-2,5; молибден 1,5-2,5; цирконий 1,0-2,0; хром 0,5-0,7; углерод не более 0,05; кислород не более 0,12; азот не более 0,03; водород не более 0,003; титан - остальное. Техническим результатом изобретения является повышение характеристик прочности металла шва (до 973 МПа) при сохранении характеристик пластичности. 3 табл. Подробнее
Дата
2019-12-17
Патентообладатели
Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации
Авторы
Орыщенко Алексей Сергеевич , Леонов Валерий Петрович , Михайлов Владимир Иванович , Сахаров Игорь Юрьевич , Кузнецов Сергей Васильевич , Баранова Светлана Борисовна , Попов Алексей Сергеевич , Нурутдинова Элина Геннадьевна
Жаропрочный деформируемый сплав на основе никеля с низким температурным коэффициентом линейного расширения и изделие, выполненное из него / RU 02721261 C1 20200518/
Открыть
Описание
Изобретение относится к области металлургии, а именно к жаропрочным деформируемым сплавам на основе никеля с низким коэффициентом линейного расширения. Жаропрочный деформируемый сплав на основе никеля, содержащий, мас. %: углерод 0,02-0,08, кобальт 18,0-25,0, железо 20,0-35,0, хром 0,3-1,2, вольфрам 0,05-2,0, молибден 0,05-2,0, тантал 0,1-2,0, алюминий 0,1-1,0, титан 1,5-2,7, ниобий 4,0-6,0, бор 0,003-0,020, лантан до 0,05, церий до 0,05, магний до 0,05, скандий до 0,05, кальций до 0,05, барий до 0,05, иттрий до 0,05, никель - остальное. Сплав характеризуется высокими значениями жаростойкости при температуре 600°С и технологичности. 2 н. и 1 з.п. ф-лы, 2 табл., 4 пр. Подробнее
Дата
2019-12-11
Патентообладатели
"Федеральное государственное унитарное предприятие ""Всероссийский научно-исследовательский институт авиационных материалов"" "
Авторы
Каблов Евгений Николаевич , Мин Павел Георгиевич , Овсепян Сергей Вячеславович , Ахмедзянов Максим Вадимович , Расторгуева Ольга Игоревна , Мазалов Иван Сергеевич
Горячекатаная бесшовная насосно-компрессорная труба повышенной эксплуатационной надежности для нефтепромыслового оборудования / RU 02719618 C1 20200421/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству горячекатаной бесшовной насосно-компрессорной трубы повышенной эксплуатационной надежности, используемой для нефтепромыслового оборудования для добычи обводненной нефти и высокоминерализированных пластовых вод, содержащих углекислый газ, сероводород, ионы хлора, а также механические частицы. Бесшовная насосно-компрессорная труба получена из трубной заготовки из хромсодержащей стали, имеющей следующий состав, мас.%: от 0,22 до 0,38 углерода, 0,45 или менее кремния, от 0,80 до 1,45 марганца, 0,020 или менее фосфора, 0,010 или менее серы, 0,10 или менее алюминия, от 0,3 до 1,1 хрома, 0,12 или менее азота, по меньшей мере один компонент, выбранный из группы: 0,11 или менее ванадия и 0,07 или менее ниобия, остальное - железо (Fe) и неизбежные примеси. Для компонентов стали выполняются соотношения: 0,6≤|С|+|Mn|/4+|Cr|/5≤0,9 и 0,07≤|V|+2x|Nb|≤0,14, где |С|, |Mn|, |Cr|, |V| и |Nb| - абсолютная величина содержания, мас.%, углерода, марганца, хрома, ванадия и ниобия. Сталь может дополнительно содержать по меньшей мере один из: 0,20 мас.% или менее никеля, 0,25 мас.% или менее меди и 0,10 мас.% или менее титана. Трубную заготовку подвергают прошивке, прокатке в непрерывном стане и высокотемпературной термомеханической обработке в редукционном стане при температуре 950-1075°С с коэффициентом вытяжки 1,2-2,2. Обеспечивается требуемый уровень прочности, повышенная коррозионная стойкость и эксплуатационная надежность. 3 з.п. ф-лы, 1 ил., 3 табл. Подробнее
Дата
2019-12-04
Патентообладатели
"Акционерное общество ""Первоуральский новотрубный завод"" "
Авторы
Павлов Александр Александрович , Родионова Ирина Гавриловна , Александров Сергей Владимирович , Лаев Константин Анатольевич , Щербаков Игорь Викторович , Девятерикова Наталья Анатольевна , Ошурков Георгий Леонидович , Рогова Ксения Владимировна
Способ получения стирола / RU 02721772 C1 20200522/
Открыть
Описание
Способ может быть использован в нефтехимической и других отраслях химической промышленности. Для получения стирола осуществляют парофазную дегидратацию метилфенилкарбинолсодержащего сырья на катализаторе, содержащем окись алюминия, в присутствии водяного пара. Перед дегидратацией сырье предварительно испаряют при температуре 190-200°С в токе перегретого до температуры 400-550°С водяного пара с последующей очисткой в дополнительно установленном адсорбере, содержащем отработанный 4000-8000 часов в этом же процессе катализатор и расположенный над ним алюмосиликатсодержащий адсорбент. Адсорбент имеет состав, мас.%: оксид алюминия 5-30, оксид железа (II) 0,1-5,0, оксид магния 0,1-5,0, оксид кальция 0,1-5,0, оксид калия 0,1-3,0, оксид натрия 0,1-3,0, оксид титана (IV) 0,1-3,0, оксид кремния остальное. Массовое содержание отработанного катализатора от общей загрузки составляет 80-90%. После очистки сырье поступает в реактор дегидратации. Технический результат - увеличение срока службы катализатора, повышение качества сырья, поступающего на дегидратацию, при сохранении высокой селективности процесса. 4 пр. Подробнее
Дата
2019-12-02
Патентообладатели
"Общество с ограниченной ответственностью ""Научно-производственное объединение ЕВРОХИМ"" "
Авторы
"Общество с ограниченной ответственностью ""Научно-производственное объединение ЕВРОХИМ"" "
Высокопрочный легированный антифрикционный чугун / RU 02720271 C1 20200428/
Открыть
Описание
Изобретение относится к металлургии, в частности к высокопрочным антифрикционным чугунам, и может использоваться для изготовления литых деталей цилиндропоршневой группы двигателей, работающих в условиях трения в газовых средах. Чугун содержит, мас. %: углерод 3,1-3,6; кремний 2,0-2,5; марганец 0,3-0,7; никель 2,0-3,6; молибден 1,2-2,5; медь 0,6-1,5; хром 0,02-0,06; магний 0,02-0,03; церий 0,03-0,05; ванадий 0,52-1,15; титан 0,03-0,22; барий 0,03-0,06; бор 0,01-0,03; цирконий 0,05-0,12; олово 0,002-0,005 и железо - остальное. Обеспечивается повышение коррозионной усталости в газовых средах, предельного режима работы при трении, износостойкости и антифрикционных свойств. 2 табл. Подробнее
Дата
2019-11-28
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Ярославский государственный технический университет"" ФГБОУВО ""ЯГТУ"" "
Авторы
Алов Виктор Анатольевич , Епархин Олег Модестович , Карпенко Михаил Иванович , Попков Александр Николаевич , Карпенко Валерий Михайлович , Дударева Мария Ивановна
Способ получения паяного соединения алюмооксидной керамики с титановым сплавом ВТ1-0 / RU 02717446 C1 20200323/
Открыть
Описание
Изобретение может быть использовано для создания паяного соединения алюмооксидной керамики со сплавом ВТ1-0 в медицине, в частности для пайки деталей эндопротеза тазобедренного сустава. Сборку нагревают в условиях вакуума не хуже (1÷5)×10-5 торр в вакуумной печи со скоростью нагрева не менее 20°С/мин и охлаждении со скоростью не более 5°С/мин. Перед пайкой на алюмооксидную керамику наносят покрытие титана толщиной 150-300 нм и отжигают в вакууме при температуре 1380-1420°С в течение 1-2 часов. Сборку нагревают в вакуумной печи до температуры пайки 940-960°С с выдержкой 15-20 мин и охлаждают до температуры 600-650°С. Охлаждение до комнатной температуры проводят со скоростью остывания печи. В качестве припоя используют быстрозакаленный ленточный припой на основе сплава титана и циркония при следующем соотношении компонентов припоя, мас.%: цирконий 38-42, кобальт 25-28, титан - остальное. Техническим результатом является снижение степени рекристаллизации сплава ВТ1-0 и деградации его механических свойств после пайки. 2 з.п. ф-лы, 7 ил., 2 пр. Подробнее
Дата
2019-11-25
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский ядерный университет ""МИФИ"" "
Авторы
Калин Борис Александрович , Федотов Иван Владимирович , Севрюков Олег Николаевич , Пахалюк Владимир Иванович , Немчинов Юрий Михайлович , Иванников Александр Александрович , Сучков Алексей Николаевич
Сплав на основе алюминия и аэрозольный баллон из этого сплава / RU 02718370 C1 20200406/
Открыть
Описание
Изобретение относится к области металлургии, а именно к разработке состава сплава на основе алюминия для изготовления аэрозольных баллонов. Сплав содержит ингредиенты в следующем соотношении в мас.%: железо 0,21–0,25, кремний 0,08–0,10, магний 0,07–0,27, марганец 0,06–0,24, титан 0,01–0,02, цинк от 0,001 до менее 0,02, медь 0,0001–0,03, алюминий и неизбежные примеси – остальное, при этом общее содержание примесей в сплаве ограничено в интервале 0,06–0,15 мас.%, а отношение содержания марганца к содержанию кремния составляет от 0,6 до 3,0. Обеспечивается получение аэрозольных баллонов, обладающих меньшим весом, при сохранении прочностных характеристик, пластичности и коррозионной стойкости. 2 н. и 6 з.п. ф-лы, 6 ил., 2 табл., 3 пр. Подробнее
Дата
2019-11-18
Патентообладатели
"Акционерное общество ""Арнест"" "
Авторы
Сагал Алексей Эдуардович
Способ модификации поверхности изделий из титана / RU 02718028 C1 20200330/
Открыть
Описание
Изобретение относится к металлургии, а именно к способу модификации поверхности, а именно к электронно-пучковой обработке и нанесению тонких пленок, и может быть использовано в авиационной, машиностроительной и других областях промышленности, а также в медицине. Способ модификаций обработки поверхности изделий из титана заключается в том, что поверхности изделий оплавляют концентрированными потоками энергии с последующим осаждением плазмохимическим методом на нее кремний-углеродной пленки в смеси аргона и паров полифенилметилсилоксана с использованием импульсного биполярного смещения амплитудой отрицательного импульса от 100 В до 700 В, прикладываемого к оснастке с изделиями. Предварительное оплавление поверхности осуществляют импульсным широкоапертурным электронным пучком. В качестве исходного материала для получения кремний-углеродной пленки используют полифенилметилсилоксан. Обеспечивается повышение механических и трибологических свойств изделий из титана, обладающих биосовместимостью и сочетающих в себе высокую твердость, низкий коэффициент трения и низкую скорость износа. 2 з.п. ф-лы, 1 ил., 2 табл, 2 пр. Подробнее
Дата
2019-11-14
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук,
Авторы
Гренадёров Александр Сергеевич , Оскомов Константин Владимирович , Соловьев Андрей Александрович , Онищенко Сергей Александрович
СПОСОБ ОТДЕЛЕНИЯ ИТТРИЯ И ИТТЕРБИЯ ОТ ПРИМЕСЕЙ ТИТАНА / RU 02713766 C1 20200207/
Открыть
Описание
Изобретение относится к гидрометаллургии редких металлов и может быть использовано для получения экстрактов РЗМ с пониженным содержанием титана при переработке экстракционной фосфорной кислоты в процессе производства фосфорных удобрений, а также при переработке сернокислых растворов, содержащих ионы РЗМ и титана. Отделение иттрия и иттербия от примесей титана включает экстракцию катионов иттрия, иттербия и титана из растворов фосфорной кислоты органическим экстрагентом - раствором ди-2-этилгексилфосфорной кислоты в керосине. В качестве реэкстрагента используют водный раствор щавелевой кислоты концентрацией от 0,25 до 1 М. Скорость перемешивания от 300 до 500 об/мин. Экстракцию проводят из растворов серной кислоты, реэкстракцию проводят в 10-14 ступеней при соотношении объемов экстракта, насыщенного титаном, иттрием и иттербием, и водного раствора 0,5-2:1, температуре от 30 до 60°С и времени контакта фаз от 20 до 30 мин с получением очищенного раствора серной кислоты, который направляют на выщелачивание фосфогипса или на экстракцию фосфорной кислоты из апатита. Очищенный от ионов титана экстракт направляют на реэкстракцию РЗМ, а водный раствор титана - на регенерацию щавелевой кислоты и получение соединений титана. Способ позволяет извлечь 90% титана из экстракта на основе ди-(2-этилгексил)фосфорной кислоты при сохранении в нем редкоземельных металлов. 5 ил., 1 табл. Подробнее
Дата
2019-11-06
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Санкт-Петербургский горный университет"" "
Авторы
Черемисина Ольга Владимировна , Сергеев Василий Валерьевич , Федоров Александр Томасович , Виленская Анастасия Викторовна , Алферова Дарья Артемовна
ПРОВОЛОКА СВАРОЧНАЯ ИЗ ТИТАНОВЫХ СПЛАВОВ / RU 02721976 C1 20200525/
Открыть
Описание
Изобретение может быть использовано в производстве присадочных материалов для дуговой сварки в среде инертных газов высокопрочных (α+β) и псевдо-β-титановых сплавов, предназначенных для использования в качестве конструкционного высокопрочного высокотехнологичного материала. Сварочная проволока содержит, мас. %: алюминий 3,0-4,0; ванадий 0,2-1,2; молибден 0,2-1,2; цирконий 1,0-2,0; хром 0,2-1,2; ниобий 0,2-1,2; кислород - не более 0,12; углерод - не более 0,03; азот - не более 0,03; водород - не более 0,003; титан - остальное. Сварочная проволока обеспечивает получение сварных соединений с высокими характеристиками прочности (до 1010 МПа) при сохранении характеристик пластичности. 4 табл., 1 пр. Подробнее
Дата
2019-11-05
Патентообладатели
Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации
Авторы
Орыщенко Алексей Сергеевич , Леонов Валерий Петрович , Михайлов Владимир Иванович , Сахаров Игорь Юрьевич , Грошев Андрей Леонидович , Кузнецов Сергей Васильевич , Баранова Светлана Борисовна
ВЫСОКОДЕМПФИРУЮЩАЯ СТАЛЬ С ТРЕБУЕМЫМ УРОВНЕМ ДЕМПФИРУЮЩИХ СВОЙСТВ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЁ / RU 02721262 C1 20200518/
Открыть
Описание
Изобретение относится к металлургии, а именно к сталям, обладающим высокой демпфирующей способностью и использующимся при изготовлении холодно- и горячекатаных листов, сортового проката, при изготовлении элементов различных конструкций, а также деталей крепежа. Сталь содержит компоненты в следующем соотношении, мас.%: углерод не более 0,045, кремний 0,01-0,55, марганец 0,005-0,65, алюминий 3,0-7,7, титан 0,001-0,3, кобальт 0,052-0,095, хром 0,001-0,35, медь не более 0,2, никель не более 0,2, молибден 0,001-0,4, сера не более 0,02, фосфор не более 0,02, азот не более 0,015, железо и неизбежные примеси – остальное. Содержания титана, молибдена, кобальта и углерода удовлетворяют условию: [0,2Ti+0,1Mo+0,1Co-0,9C]>0, а содержания кобальта, марганца и никеля удовлетворяют условию: [0,9Co-0,1Mn-0,2Ni]>0. Повышается демпфирующая способность стали и изделий, выполненных из нее, в области повышенных амплитуд колебаний, составляющих от 2,85×10-4 до 3,15×10-4, при сохранении высокого уровня демпфирования в области малых амплитуд колебаний, составляющих от 0,85×10-4 до 1,15×10-4, а также при сохранении требуемого уровня ударной вязкости и относительного удлинения. 2 н. и 2 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-10-22
Патентообладатели
"Федеральное государственное унитарное предприятие ""Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина"" "
Авторы
Семенов Виктор Владимирович , Углов Владимир Александрович , Глезер Александр Маркович , Чудаков Иван Борисович
Способ визуализации индивидуализированной модели имплантата для замещения костных дефектов челюстей / RU 02720167 C1 20200424/
Открыть
Описание
Изобретение относится к медицине. Способ визуализации индивидуализированной модели имплантата для замещения костных дефектов челюстей включает определение размеров зоны дефекта с последующим моделированием имплантата и заключается в создании компьютерной модели имплантата, соизмеримой с изучаемым костным дефектом, основу которой составляет гранецентрированная кубическая решетка кристалла. В полученную компьютерную ячеистую модель имплантата вводят опорные элементы под ортопедические конструкции и элементы для фиксации, затем произведенную компьютерную модель ячеистого имплантата помещают в имеющийся дефект кости челюсти в 3D-мерном изображении для подтверждения ее анатомической формы и соизмерности; далее полученную модель в формате STL методом прототипирования преобразуют в ячеистый имплантат из титана ВТ-5. Технический результат заключается в увеличении точности моделирования формы и размеров заменяемого органа и предупреждении осложнений, в том числе отторжения имплантата. 3 ил., 3 пр. Подробнее
Дата
2019-10-18
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Пермский государственный медицинский университет имени академика Е.А. Вагнера"" Министерства здравоохранения Российской Федерации "
Авторы
Василюк Владимир Павлович , Штраубе Галина Ивановна , Четвертных Виктор Алексеевич , Файзрахманов Рустам Абубакирович , Долгова Елена Владимировна