Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
Способ получения вспененного гидрогеля кремниевой кислоты / RU 02720416 C1 20200429/
Открыть
Описание
Изобретение относится к области получения плотных вспененных структур с низкой теплопроводностью, а именно получению вспененного гидрогеля кремниевой кислоты. Описан способ получения вспененного гидрогеля кремниевой кислоты, по которому коллоидный раствор, сформированный в процессе гидролиза смеси водного раствора силиката щелочного металла и углеводородного ПАВ, подвергают фазовому золь-гель переходу путем смешения указанного коллоидного раствора с активатором гелеобразования, отличающийся тем, что смешение коллоидного раствора с активатором осуществляют в объеме смешения, затем образованный в объеме смешения гидрозоль кремниевой кислоты компрессионно подают на пеногенерирующие сетки с формированием вспененного гидрогеля кремниевой кислоты, при этом в объеме смешения процесс осуществляют при объемном соотношении коллоидный раствор:активатор как 1:(30-100), при температуре активации от минус 20 до 0°С или от +50 до +110°С, в качестве активатора используют газообразный оксид неметалла, для процесса смешения в объеме и коллоидный раствор, и газообразный активатор подают компрессионно при давлении 3-10 атм, а в качестве источника газа используют баллон со сжатым газом или твердотопливный газогенератор. Технический результат – улучшение характеристик получаемого вспененного гидрогеля кремниевой кислоты. 7 з.п. ф-лы, 2 ил., 3 табл., 8 пр. Подробнее
Дата
2019-12-27
Патентообладатели
"Общество с ограниченной ответственностью ""Техно"" , Общество с ограниченной ответственностью ""ИННОКОЛЛОИД"" "
Авторы
Баев Сергей Николаевич , Виноградов Александр Валентинович , Виноградов Владимир Валентинович , Демидов Владимир Геннадьевич , Колчин Вадим Владимирович , Тукмачев Павел Сергеевич , Филатов Сергей Геннадьевич , Чащина Елена Павловна
Комплексный термоэлектрический венец для дымовой трубы / RU 02723100 C1 20200608/
Открыть
Описание
Изобретение относится к теплоэнергетике. Комплексный термоэлектрический венец для дымовой трубы, содержащий цилиндрический корпус, выполненный из коррозионностойкого материала с высокой теплопроводностью, который разделен внешним опорным кольцом на верхнюю гофрированную рабочую часть, опирающуюся на торец дымовой трубы, и нижнюю опорную часть, пропущенную вовнутрь дымовой трубы, гофры рабочей части корпуса образуют прямоугольные гнезда, в которые частично утоплены термоэлектрические звенья, состоящие из прямоугольных вставок, внутри которых помещены ряды, состоящие из расположенных параллельно термоэлектрических преобразователей, в каждом из термоэлектрических преобразователей пары проволочных отрезков металлов М1, М2 расположены параллельно с образованием между собой некоторого зазора, термоэлектрические звенья установлены в гнездах таким образом, чтобы большая часть каждого термоэлектрического преобразователя каждого ряда омывалась наружным воздухом, соединенные термоэлектрические звенья венца попарно соединены между собой, образуя термоэлектрический блок, который соединен с токовыводами. Корпус выполнен коническо-цилиндрическим с верхней конической рабочей частью с верхним диаметром, закрывающей сверху холодную часть наружной поверхности трубы, с углом наклона, большим или равным углу естественного откоса воды, причем со стыком рабочей и опорной частей внутри корпуса соединен кольцевой наклонный борт, образующий кольцевой сливной лоток, снабженный сливным патрубком с запорным устройством, соединенным со сливным трубопроводом и конденсатным баком, рабочая часть корпуса выполнена с наклонными гофрами, образующими наклонные гнезда, наружная поверхность рабочей части корпуса между термоэлектрическими звеньями покрыта слоем теплоизоляции, меньшей, чем высота термоэлектрических преобразователей, каждое термоэлектрическое звено вверху и внизу рабочей части корпуса соединено перемычками с коллекторами одноименных электрических зарядов, образуя термоэлектрический блок, а вышеупомянутые коллекторы соединены с токовыводами. Технический результат - повышение экологической безопасности и эффективности комплексного термоэлектрического венца для дымовой трубы. 5 ил. Подробнее
Дата
2019-10-28
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Юго-Западный государственный университет"" "
Авторы
Ежов Владимир Сергеевич , Бурцев Алексей Петрович , Перепелица Никита Сергеевич , Дюкарев Алексей Андреевич , Грэдинарь Евгений Николаевич , Шевченко Ирина Михайловна
СПОСОБ ОПРЕДЕЛЕНИЯ ОБЩЕГО СОДЕРЖАНИЯ ОРГАНИЧЕСКОГО ВЕЩЕСТВА В ПОРОДАХ СЛАНЦЕВЫХ ТОЛЩ, ОБОГАЩЕННЫХ УГЛЕВОДОРОДАМИ (ВАРИАНТЫ) / RU 02720582 C1 20200512/
Открыть
Описание
Изобретение относится к области исследований свойств пород сланцевых толщ, обогащенных углеводородами, а именно – исследований общего содержания органического вещества. Изобретение касается способа определения общего содержания органического вещества в породах сланцевых толщ, обогащенных углеводородами, в соответствии с которым: осуществляют регистрацию непрерывного распределения компоненты теплопроводности пород вдоль напластования пород вдоль образцов полноразмерного керна скважины в интервале глубин сланцевой толщи или его малогабаритных дубликатов; затем по результатам регистрации непрерывного распределения компоненты теплопроводности пород проводят отбор коллекции проб вдоль линии регистрации непрерывного распределения компоненты теплопроводности вдоль напластования пород из части образцов полноразмерного керна скважины или из части его малогабаритных дубликатов; перед проведением регистрации непрерывного распределения компоненты теплопроводности устанавливают пространственное разрешение регистрации непрерывного распределения компоненты теплопроводности пород вдоль напластования пород таким, чтобы оно было не более, чем линейный размер образцов проб, отбираемых для определений общего содержания органического вещества при помощи метода пиролиза, вдоль направления регистрации непрерывного распределения компоненты теплопроводности пород вдоль напластования пород; после этого для образцов отобранной коллекции проб проводят определения общего содержания органического вещества при помощи метода пиролиза; далее определяют компоненту теплопроводности пород вдоль напластования пород для образцов отобранной коллекции проб по данным о непрерывном распределении компоненты теплопроводности пород; затем определяют теплопроводность минеральной матрицы пород сланцевой толщи; затем устанавливают коэффициент связи между компонентой теплопроводности пород вдоль напластования пород и общим содержанием органического вещества для пород сланцевой толщи; после этого определяют непрерывное распределение общего содержания органического вещества вдоль образцов полноразмерного керна скважины в интервале глубин сланцевой толщи или его малогабаритных дубликатов по установленному соотношению, связывающему значения компоненты теплопроводности пород вдоль напластования пород вдоль образцов полноразмерного керна скважины или его малогабаритных дубликатов в интервале глубин сланцевой толщи, теплопроводности минеральной матрицы пород и коэффициенте связи между компонентой теплопроводности пород вдоль напластования пород и общим содержанием органического вещества пород. Изобретение также относится к вариантам способов. Технический результат - повышение качества данных о непрерывном распределении общего содержания органического вещества вдоль скважины, пробуренной в сланцевой толще, обогащенной углеводородами. 3 н. и 14 з.п. ф-лы, 6 ил., 2 табл., 1 пр. Подробнее
Дата
2019-10-25
Патентообладатели
"Автономная некоммерческая образовательная организация высшего образования ""Сколковский институт науки и технологий"" "
Авторы
Попов Юрий Анатольевич , Спасенных Михаил Юрьевич , Попов Евгений Юрьевич , Карамов Тагир Ильгизович , Козлова Елена Владимировна
СВЕТОДИОДНЫЙ ИСТОЧНИК ИЗЛУЧЕНИЯ / RU 02723967 C1 20200618/
Открыть
Описание
Изобретение относится к полупроводниковым источникам оптического излучения на основе светодиодных нитей - филаментов, изготавливаемых из светодиодных гетероструктур. Заявленный светодиодный источник излучения содержит колбу, заполненную газом, имеющим низкий коэффициент вязкости и высокий коэффициент теплопроводности, в которой размещен держатель со штенгелем и стойкой сердечника, на которой закреплена объемная излучающая свет конструкция из светодиодных нитей, цоколь и устройство питания, электрически соединенное по переменному току с цоколем, а положительным и отрицательным электродами со светодиодными нитями. Внутренняя поверхность колбы покрыта оптически прозрачным электропроводящим материалом. Дополнительно введен источник свободных электронов, температурно сопряженный со светодиодными нитями, причем оптически прозрачный электропроводящий материал электрически соединен с положительным электродом устройства питания, а источник свободных электронов - с отрицательным. Технический результат - повышение эффективности охлаждения источника излучения в процессе его работы. 1 ил. Подробнее
Дата
2019-10-16
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Томский государственный университет систем управления и радиоэлектроники"" "
Авторы
Давыдов Валерий Николаевич , Туев Василий Иванович , Давыдов Михаил Валерьевич , Солдаткин Василий Сергеевич , Вилисов Анатолий Александрович , Афонин Кирилл Нильевич
Теплица с комплексной очисткой и утилизацией сбросных газов / RU 02722626 C1 20200602/
Открыть
Описание
Изобретение относится к области сельского хозяйства и теплоэнергетике и может быть использовано для повышения урожайности в овощеводстве закрытого грунта совместно с очисткой и утилизацией газообразных продуктов сгорания теплоэнергетических установок и двигателей внутреннего сгорания. Теплица с комплексной очисткой и утилизацией сбросных газов содержит корпус и зону обработки, соединенную с транзитным газоходом и содержащую отводной газоход, распределитель озоновоздушной смеси, соединенный с озонатором. Корпус теплицы снабжен вытяжной трубой с дефлектором, установленный на вертикальные пластинчатые теплообменники. Каждый пластинчатый теплообменник изготовлен из прозрачного материала с высокой теплопроводностью и коррозионной стойкостью и соединен с газовым коллектором и конденсатным коллектором, соединенным с анионитовым фильтром. Распределитель озоновоздушной смеси встроен в отводной газоход. Корпус каждого вертикального пластинчатого теплообменника выполнен прямоугольным и снабжен нижним лотком со штуцером слива конденсата. На уровне нижней кромки через наружную сторону каждого вертикального пластинчатого теплообменника пропущен во внутрь его ряд распределительных газовых патрубков, наклоненных относительно горизонта под углом 45° и соединенных с правой и левой ветвями газового коллектора. Между нижней кромкой наружной стороны каждого вертикального пластинчатого теплообменника и верхней кромкой нижнего лотка выполнена горизонтальная заборная щель. Ширина Δ заборной щели регулируется регулировочной планкой и распределительными щелями. На уровне нижней кромки через наружную сторону каждого вертикального пластинчатого теплообменника пропущен во внутрь его ряд наклонных распределительных газовых патрубков, соединенных с правой и левой ветвями газового коллектора. Штуцеры слива конденсата лотков каждого вертикального пластинчатого теплообменника соединены с правой или левой ветвью конденсатного коллектора, соединенного с анионитовым фильтром. Изобретение обеспечивает достижение технического результата, заключающегося в повышении удобства эксплуатации при одновременном упрощении конструкции. 6 ил. Подробнее
Дата
2019-09-25
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Юго-Западный государственный университет"" "
Авторы
Ежов Владимир Сергеевич
Автономный кожухотрубчатый термоэлектрогенератор / RU 02715268 C1 20200226/
Открыть
Описание
(57) Изобретение относится к теплоэлектроэнергетике и может быть использовано для получения электрической энергии в процессе транспортирования в трубах теплоносителей. Термоэлектрогенератор содержит участок трубопровода, на котором расположены продольные теплоэлектрические секции, соединенные перемычками с одноименными коллекторами электрических зарядов, образуя термоэлектрические блоки, снабженные токовыводами с одноименными зарядами, каждая секция состоит из составленных параллельно друг за другом термоэлектрических преобразователей, каждый из которых состоит из пары отрезков, выполненных из разных металлов М1 и М2, концы которых расплющены и соединены между собой, образуя верхние и нижние спаи, причем нижние спаи в каждой теплоэлектрической секции согнуты под углом 90°, продольно соединены сверху уголком, выполненным из материала с высокой теплопроводностью и зажаты с противоположной стороны параллельной крепежной полосой из диэлектрического материала, торцы которой совместно с торцами уголка прижаты к поверхности трубопровода, нижние спаи и нижняя часть термоэлектрических преобразователей покрыты слоем диэлектрического материала, пространство между нижними спаями на высоту крепежных полос заполнено теплоизоляционным материалом, теплоэлектрические секции закрыты цилиндрическим кожухом из коррозионноустойчивого материала и состоящим из двух полуцилиндрических кожухов, снабженных продольными фланцами с крепежными отверстиями и торцевыми крышками, внутренняя поверхность полуцилиндрических кожухов снабжена завихрителями, расположенными относительно оси трубопровода под углом 45°, верхний полукожух снабжен двумя вертикальными заборными трубами по краям полуцилиндрического кожуха, снабженными заборными щелями и заглушенными сверху коническими шляпками, посреди кожуха устроена вертикальная вытяжная труба с дефлектором. Технический результат: повышение надежности и эффективности автономного термоэлектрогенератора. 7 ил. Подробнее
Дата
2019-09-25
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Юго-Западный государственный университет"" "
Авторы
Ежов Владимир Сергеевич , Семичева Наталья Евгеньевна , Бурцев Алексей Петрович , Перепелица Никита Сергеевич
Вентилируемый стеновой элемент / RU 02716071 C1 20200305/
Открыть
Описание
Изобретение относится к строительству и может быть использовано при изготовлении наружных панелей и блоков для жилых и общественных зданий, возводимых в жарком климате. Техническим результатом предлагаемого изобретения является снижение тепловых потерь в вентилируемых полостях в условиях возрастания концентрации каплеобразующих и мелкодисперсных конденсирующихся частиц влаги в атмосферном воздухе, поступающих в вентилируемый стеновой элемент, путем устранения налипания влажных загрязнений в полостях криволинейных канавок за счет выполнения их из биметалла. Технический результат достигается тем, что вентилируемый стеновой элемент содержит внутренние вертикальные полости с утеплителем, ребра жесткости между ними с дополнительными щелевидными пустотами, расположенными соосно со сквозными вентилируемыми щелевидными пустотами, связанными между собой горизонтальными каналами и соединенными с атмосферой при помощи отверстий в виде суживающихся сопел в нижней части вентилируемого стенового элемента и в виде расширяющихся сопел в его верхней части, при этом на внутренней поверхности суживающихся и расширяющихся сопел продольно от входа к выходу расположены криволинейные канавки, кроме того, криволинейные канавки имеют профиль в виде «ласточкина хвоста», причем и на входе суживающегося сопла, и на выходе расширяющегося сопла выполнены кольцевые канавки, каждая из которых соединена с накопителем загрязнений, при этом криволинейные канавки с профилем в виде «ласточкина хвоста» выполнены из биметалла, причем первый материал биметалла, со стороны движущегося вращающегося потока атмосферного воздуха, имеет коэффициент теплопроводности в 2,0–2,5 раза выше, чем коэффициент теплопроводности второго материала биметалла. 5 ил. Подробнее
Дата
2019-09-25
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Юго-Западный государственный университет"" "
Авторы
Кобелев Николай Сергеевич , Пахомова Екатерина Геннадьевна , Кобелев Владимир Николаевич , Емельянов Алексей Сергеевич , Жмакин Виталий Анатольевич , Попова Мария Евгеньевна
СПОСОБ ИЗГОТОВЛЕНИЯ СПИРАЛЬНОГО АКТИВНОГО ЭЛЕМЕНТА СТАТОРА МОМЕНТНОГО ДВИГАТЕЛЯ / RU 02713217 C1 20200204/
Открыть
Описание
Изобретение относится к области электротехники, в частности к изготовлению спиральных активных элементов статоров моментных магнитоэлектрических двигателей, от которых требуется создание повышенной величины развиваемого момента при ограниченном объеме двигателя. Технический результат - расширение арсенала способов изготовления спиральных активных элементов статоров моментных двигателей с одновременным исключением повреждений электрической цепи и повышением теплоотдачи от спирального активного элемента статора на корпус двигателя. Способ изготовления спирального активного элемента статора моментного двигателя заключается в последовательном формировании слоев с заданной конфигурацией из материалов с различной электропроводностью на вращающейся гильзе из материала с высокой теплопроводностью. Слои формируют последовательным нанесением мелких частиц электропроводящего и электроизоляционного теплопроводящего материалов газодинамическим и плазменным напылением соответственно. 8 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-08-30
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский Томский политехнический университет"" "
Авторы
Мартемьянов Владимир Михайлович , Долгих Антонина Геннадьевна
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ТЕПЛОИЗОЛЯЦИОННОГО БЕТОНА / RU 02717156 C1 20200318/
Открыть
Описание
Изобретение относится к области строительных материалов и может быть использовано для изготовления изделий, используемых в промышленном и гражданском строительстве. Сырьевая смесь для теплоизоляционного бетона включает, мас.%: портландцемент 48,0 - 54,0, грунт, представленный тонким песком с модулем крупности Мк=0,9 23,6 - 26,1, корунд Al2O3 с удельной поверхностью Sуд.=1500 см2/г 1,4 - 1,9, пенообразующую добавку на протеиновой основе Addiment SB31L 0,2 - 0,4, воду 20,8 - 23,6. Технический результат – повышение прочности на растяжение при изгибе и понижение коэффициента теплопроводности пенобетона. 1 табл., 1 пр. Подробнее
Дата
2019-08-30
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Петербургский государственный университет путей сообщения Императора Александра I"" "
Авторы
Сватовская Лариса Борисовна , Сычева Анастасия Максимовна , Соловьёва Валентина Яковлевна , Степанова Ирина Витальевна , Абу-Хасан Махмуд , Соловьёв Дмитрий Вадимович , Козлов Игорь Сергеевич , Кабанов Александр Александрович
АЛЮМИНИЕВЫЙ ЭЛЕКТРОЛИЗЕР С УТЕПЛЕННОЙ БОРТОВОЙ ФУТЕРОВКОЙ / RU 02714565 C1 20200218/
Открыть
Описание
Изобретение относится к бортовой футеровке электролизера для электролитического получения алюминия. Электролизер включает металлический катодный кожух, теплоизоляционную и огнеупорную футеровку, подину, выполненную из подовых блоков с катодными токоподводящими стержнями, бортовую футеровку, выполненную из карбидкремниевых плит с дополнительным формованным огнеупорным слоем с более низкой теплопроводностью, установленным между стенками металлического катодного кожуха и карбидкремниевыми плитами. Обеспечивается снижение рабочего напряжения электролизера за счет снижения тепловых потерь с бортовых стенок электролизера, стабилизация теплового баланса и увеличение МГД-стабильности электролизера. 3 з.п. ф-лы, 4 ил. Подробнее
Дата
2019-08-15
Патентообладатели
"Общество с ограниченной ответственностью ""Объединенная Компания РУСАЛ Инженерно-технологический центр"" "
Авторы
Архипов Геннадий Викторович , Мухаметчин Рашид Халиуллович , Шайдулин Евгений Рашидович , Попов Александр Владимирович , Авдеев Юрий Олегович
Способ литья стальной заготовки / RU 02720415 C1 20200429/
Открыть
Описание
Изобретение относится к литейному производству. Во вращающейся металлической форме формируют прибыльную часть стальной заготовки и заливают в металлическую форму расплав стали. После заливки прибыльную часть покрывают экзотермической смесью и укрывают материалом с низкой теплопроводностью. Для формирования прибыльной части применяют материал с низкой теплопроводностью. Обеспечивается увеличение коэффициента использования металла за счет исключения усадочных дефектов в заготовке. 1 ил. Подробнее
Дата
2019-08-09
Патентообладатели
Общество с ограниченной ответственностью «Челябинский Фланцевый завод»
Авторы
Левин Дмитрий Олегович
СПЛАВ НА ОСНОВЕ ТИТАНА / RU 02710407 C1 20191226/
Открыть
Описание
Изобретение относится к области металлургии, а именно к титановым α сплавам, предназначенным для использования в качестве конструкционного высокотехнологичного теплопроводного материала для энергетических силовых и теплообменных установок, авиационной и космической техники, длительно работающих при температурах от -100°С до 450°С. Сплав на основе титана содержит, мас.%: цирконий 20-22, кислород 0,04-0,09, алюминий 0,001-0,01, кремний ≤0,005, железо ≤0,05, хром ≤0,002, никель ≤0,003, углерод ≤0,01, азот ≤0,005, водород ≤0,003; титан - остальное. Физико-механические характеристики сплава при температуре 20°С составляют: σв=530-550 МПа, σ0,2=400-430 МПа, δ≥30%, теплопроводность сплава 15 Вт/(м·K). 3 табл. Подробнее
Дата
2019-07-26
Патентообладатели
"Федеральное государственное унитарное предприятие ""Центральный научно-исследовательский институт конструкционных материалов ""Прометей"" имени И.В. Горынина Национального исследовательского центра ""Курчатовский институт"" "
Авторы
Орыщенко Алексей Сергеевич , Леонов Валерий Петрович , Счастливая Ирина Алексеевна , Третьяков Игорь Валерьевич
БЕСПЛАТФОРМЕННАЯ ИНЕРЦИАЛЬНО-СПУТНИКОВАЯ СИСТЕМА / RU 02720184 C1 20200427/
Открыть
Описание
Изобретение относится к навигационным гироскопическим приборам и может быть применено в системах инерциальной навигации. Бесплатформенная инерциально-спутниковая система содержит корпус, крышки, три гироскопа, три акселерометра и блок электроники. При этом корпус выполнен в виде кронштейна, имеющего форму, приближенную к прямоугольному параллелепипеду, во внутренней полости которого расположены акселерометры и блок электроники, а гироскопы и акселерометры установлены с обеспечением ортогональности их измерительных осей. Бесплатформенная инерциально-спутниковая система оснащена блоком вторичного электропитания, расположенным во внутренней полости корпуса и зафиксированным на одной из крышек, закрывающих верхнюю и нижнюю грани корпуса. Гироскопы установлены в волоконно-оптическом измерителе угловой скорости, расположенном вне корпуса, а акселерометры зафиксированы на дополнительном кронштейне, при этом внутренняя полость корпуса разделена перегородкой на две полости, в одной из которых расположены акселерометры и блок электроники, а во второй - блок вторичного электропитания. Дополнительный кронштейн выполнен из материала с низкой теплопроводностью. Каждый акселерометр установлен в металлический экран, выполненный в виде цилиндра. Технический результат изобретения заключается в уменьшении температурной погрешности и увеличении стабильности выходного сигнала. 2 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-07-22
Патентообладатели
"Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии ""Росатом"" , Федеральное государственное унитарное предприятие ""РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР - ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ТЕХНИЧЕСКОЙ ФИЗИКИ ИМЕНИ АКАДЕМИКА Е.И. ЗАБАБАХИНА"" "
Авторы
Перебатов Василий Николаевич , Тронин Сергей Владимирович
Бронебойный оперенный подкалиберный снаряд / RU 02720434 C1 20200429/
Открыть
Описание
Изобретение относится к артиллерийским боеприпасам, и в частности к бронебойным снарядам для гладкоствольных или нарезных артиллерийских систем среднего или крупного калибров унитарного, раздельно-гильзового или картузного заряжания. Технический результат - повышение бронебойного действия подкалиберного снаряда. Бронебойный подкалиберный снаряд содержит основной корпус с полой хвостовой частью. Внутри этой части установлен кумулятивный снаряд с донным взрывателем. В качестве донного взрывателя использована шашка взрывчатого вещества. Ее температура детонации ниже температуры детонации взрывчатого вещества кумулятивного заряда. Она плотно прижата через прокладку к торцу заряда взрывчатого вещества кумулятивного снаряда стальной пробкой. Между корпусом кумулятивного снаряда и основным корпусом снаряда установлен слой вещества с низкой теплопроводностью. Между шашкой взрывчатого вещества и пробкой прокладка отсутствует. 1 ил. Подробнее
Дата
2019-07-18
Патентообладатели
"Акционерное общество ""Научно-производственное предприятие ""Дельта"" "
Авторы
Кузнецов Николай Сергеевич
СПОСОБ ПОЛУЧЕНИЯ ПЕНОСТЕКЛА / RU 02701951 C1 20191003/
Открыть
Описание
Изобретение относится к области производства неорганических и теплоизоляционных материалов и раскрывает способ получения пеностекла. Способ включает получение измельченного стеклобоя следующего состава в мас.%: SiO2 - 72,0 ± 7,0; Na2O - 13,0 ± 2,0; CaO - 10,0 ± 2,0; MgO - 4,0 ± 2,0; Al2O3 - 1,0 ± 0,5; SO3 - 0,2 ± 0,1; K2O - 0,3 ± 0,1; Fe2O3 ≤0,2, содержащего частицы размером менее 40 мкм, добавление к измельченному стеклобою водного раствора кальцинированнной соды и глицерина, перемешивание, выдержку полученной смеси, последующую сушку при температуре менее 200°С до получения смеси с влажностью не более 1%, дезагломерацию, включающую перемешивание смеси с серой, с получением шихты с размером частиц менее 40 мкм, последующее дозирование, помещение в форму, вспенивание, фиксацию, извлечение, отжиг и охлаждение полученного пеностекла. Технический результат – повышение эффективности способа получения пеностекла с однородной пористой текстурой, высокой прочностью, низким водопоглощением и теплопроводностью. 1 н. и 17 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-07-09
Патентообладатели
"Акционерное Общество ""Компания ""СТЭС-ВЛАДИМИР"" "
Авторы
Лазарев Евгений Витальевич
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ СОСУДОВ БОЛЬШОГО ОБЪЕМА / RU 02717700 C1 20200325/
Открыть
Описание
Изобретение относится к устройствам для контроля герметичности сосудов большого объема. Сущность: устройство представляет собой компактный узел, размещенный внутри замкнутого объема проверяемого сосуда (1), и содержит плиту (2), эталонную камеру (15) давления, термосопротивление (23), стравливающий клапан (24), два электроклапана (27, 28), датчик (35) перепада давления, а также жгуты (41) управления приборами устройства и контроля за их показаниями, проходящие через проходные гермоэлементы на контрольно-регистрирующую аппаратуру, расположенную вне сосуда (1). При этом внутренняя поверхность эталонной камеры (15) омеднена и выполнена ступенчатой. Внутри эталонной камеры (15) имеются две соосно расположенные трубы, на каждой из которых установлены втулки и поджимающая втулки гайка, а также радиатор из материала высокой теплопроводности. Радиатор выполнен в виде параллельно расположенных перфорированных дисков разного диаметра, каждый из которых закреплен на соответствующем выступе ступенчатой поверхности эталонной камеры (15) и между втулками. Снаружи эталонной камеры (15) установлен с зазором вентиляционный кожух (3) из теплопроводного материала, состоящий из двух соединенных полусфер (4, 5). В полюсе верхней полусферы (5) вентиляционного кожуха (3) имеется отверстие, в полюсе нижней полусферы (4) имеется горловина с фланцем, которым она закреплена напротив имеющегося отверстия в плите (2). Напротив упомянутой горловины с другой стороны плиты (2) закреплен вентилятор (10). Технический результат: повышение точности контроля герметичности сосудов большого объема. 5 з.п. ф-лы, 4 ил. Подробнее
Дата
2019-07-09
Патентообладатели
"Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии ""Росатом"" , Федеральное государственное унитарное предприятие ""Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики"" "
Авторы
Долбищев Сергей Федорович , Герасименко Виталий Валерьевич , Смирнов Андрей Михайлович , Крючков Сергей Николаевич
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОВЫХ СВОЙСТВ ПОРОД СЛАНЦЕВЫХ ТОЛЩ / RU 02704002 C1 20191023/
Открыть
Описание
Изобретение относится к области исследований свойств пород сланцевых толщ. При осуществлении способа определяют литологические типы пород в интервалах глубин сланцевой толщи. Затем на образцах пород сланцевой толщи для каждого литологического типа определяют направления главных осей теплопроводности пород. После этого на образцах пород измеряют теплопроводности пород для направлений, соответствующих установленным направлениям главных осей теплопроводности пород, при атмосферных давлении и температуре. Измеряют объемную теплоёмкость пород при атмосферных давлении и температуре. Определяют скорости распространения продольных волн в породах для направлений, соответствующих установленным направлениям главных осей теплопроводности пород. По результатам измерений теплопроводности пород для направлений, соответствующих установленным направлениям главных осей теплопроводности пород, объемной теплоемкости пород и скорости распространения продольных волн в породах для направлений, соответствующих установленным направлениям главных осей теплопроводности, для каждого литологического типа пород устанавливают уравнения регрессии между теплопроводностью пород и скоростями распространения продольных волн в породах для соответствующих направлений главных осей теплопроводности пород, а также - уравнения регрессии между объемной теплоёмкостью пород и скоростью распространения продольной волны в породах. Определяют теплопроводность пород при атмосферных давлении и температуре для направлений, соответствующих направлениям главных осей теплопроводности пород, и объемную теплоёмкость пород при атмосферных давлении и температуре с наличием данных по скоростям распространения продольных волн в породах, используя для этого установленные для литологических типов уравнения регрессии между теплопроводностью пород и скоростью распространения продольных волн в породах для соответствующих направлений главных осей теплопроводности пород, а также - установленные для литологических типов уравнения регрессии между объемной теплоёмкостью пород и скоростью распространения продольных волн в породах. Для каждого литологического типа определяют зависимости теплопроводности пород для направлений, соответствующих направлениям главных осей теплопроводности, от температуры и давления и определяют зависимости объемной теплоёмкости пород от температуры и давления. Затем определяют теплопроводность пород для направлений, соответствующих направлениям главных осей теплопроводности пород, и объемную теплоёмкость пород при пластовых температуре и давлении, используя для этого установленные для литологических типов пород зависимости теплопроводности пород для направлений, соответствующих направлениям главных осей теплопроводности пород, от температуры и давления и зависимости объемной теплоёмкости пород от температуры и давления. Достигается расширение функциональных возможностей определения тепловых свойств пород для изучения сланцевых толщ, а также - возможность определения теплопроводности и объемной теплоемкости пород, с учетом пластовых температуры и давления. 1 пр., 3 табл. Подробнее
Дата
2019-07-03
Патентообладатели
"Автономная некоммерческая образовательная организация высшего образования ""Сколковский институт науки и технологий"" "
Авторы
Попов Юрий Анатольевич , Чехонин Евгений Михайлович , Шакиров Ануар Болатханович
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПЕНОБЕТОНА / RU 02713291 C1 20200204/
Открыть
Описание
Изобретение относится к области строительных материалов и может быть использовано для изготовления легкого бетона, используемого в промышленном и гражданском строительстве. Сырьевая смесь для пенобетона содержит, мас.%: портландцемент 46,10-48,60, песок с удельной поверхностью Sуд.=200 м2/кг 11,0-11,52, 25%-ный раствор поликарбоксилатного полимера CP-WRM, представленного сополимером акриловой кислоты и этилового эфира метакриловой кислоты со значением водородного показателя рН 6, плотностью ρ=1,033 г/см3, 0,42-0,46, пеностекло гранулированное с размером частиц 1,25 мм и насыпной плотностью ρ=250 кг/м3 18,48-19,47, воду 21,5-22,45. Технический результат - повышение прочности на сжатие и понижение коэффициента теплопроводности пенобетона. 1 табл., 1 пр. Подробнее
Дата
2019-06-27
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Петербургский государственный университет путей сообщения Императора Александра I"" "
Авторы
Иванова Вера Ефимовна , Сватовская Лариса Борисовна , Сычева Анастасия Максимовна , Соловьёва Валентина Яковлевна , Степанова Ирина Витальевна , Абу-Хасан Махмуд , Соловьёв Дмитрий Вадимович , Козлов Игорь Сергеевич
Устройство для измерения теплофизических характеристик грунта / RU 02714528 C2 20200218/
Открыть
Описание
Изобретение относится к области измерительной техники и может быть использовано для измерения теплофизических характеристик грунта, в том числе лунного грунта и грунта других небесных тел. Заявлено устройство для измерения теплофизических характеристик грунта, которое содержит закрепленные на космическом аппарате термозонд и внешний корпус. В исходном положении устройства термозонд помещен во внешний корпус и вместе с ним введен в скважину в грунте, а в рабочем положении внешний корпус устройства извлечен из скважины. Термозонд содержит опорные диски и размещенные между ними источники тепла, соединенные с дисками продольными стержнями и держатели датчиков температуры. Держатели выполнены в виде пластинчатых пружин, первые концы держателей отогнуты в сторону внешнего корпуса и снабжены датчиками температуры. Продольные стержни и держатели выполнены из материала с низкой теплопроводностью. Источники тепла содержат цилиндрический корпус, основания которого снабженные глухими радиальными отверстиями, открытыми в сторону боковой поверхности корпуса. Боковые поверхности корпусов источников тепла перекрыты цилиндрическими секторами, снабженными нагревательными элементами и взаимодействующими со сжатыми цилиндрическими пружинами, размещенными в радиальных отверстиях оснований. В исходном положении устройства цилиндрические сектора корпусов источников тепла и первые концы держателей в сжатом состоянии цилиндрических и пластинчатых пружин поджаты к внутренним поверхностям внешнего корпуса устройства. В рабочем положении устройства после извлечения внешнего корпуса из скважины цилиндрические сектора корпусов источников тепла и первые концы пластинчатых пружин держателей в разгруженном состоянии цилиндрических и пластинчатых пружин поджаты к грунту скважины. Технический результат - разработка устройства для измерения теплофизических характеристик грунта, допускающего его использование в составе автоматического космического аппарата в сочетании с обеспечением возможности исследования грунта на нескольких уровнях и повышением точности измерения теплофизических характеристик грунта. 5 з.п. ф-лы, 12 ил. Подробнее
Дата
2019-06-24
Патентообладатели
"Акционерное общество ""Научно-производственное объединение им. С.А. Лавочкина"" "
Авторы
Дудкин Константин Кириллович
СОСТАВ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ ОРГАНИЧЕСКОГО ЗАПОЛНИТЕЛЯ / RU 02713192 C1 20200204/
Открыть
Описание
Изобретение относится к производству строительных материалов и может быть использовано при изготовлении плит и блоков как теплоизоляционный и конструкционно-теплоизоляционный материал. Строительный композит представляет собой однородную прессованную массу, состоящую из костры технической конопли, неорганического вяжущего, минерального наполнителя, затворителя, гипса, глины и хризотила при следующих соотношениях компонентов, мас.%: MgO 5,5-9,5, костра 15,5-19, бишофит 20-35, глина 3-7, доломит 25-35, хризотил 5-10, гипс 0-5. Техническим результатом предлагаемого изобретения является композит с уменьшенной плотностью и теплопроводностью при повышенной водостойкости и прочности, заменяющий традиционные строительные материалы из бетона с минеральным наполнителем. 2 ил., 2 табл. Подробнее
Дата
2019-06-24
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых"" "
Авторы
Гандельсман Игорь Анатольевич , Закревская Любовь Владимировна , Капуш Илья Романович , Любин Петр Андреевич