Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
Минеральный порошок для асфальтобетонной смеси (варианты) / RU 02715403 C1 20200227/
Открыть
Описание
Изобретение относится к дорожному строительству, а именно к составу активированного минерального порошка, и может быть использовано при приготовлении щебеночно-мастичной асфальтобетонной смеси. Технический результат заключается в улучшении показателей по набуханию, пористости и показателю битумемкости минерального порошка, расширении используемых сырьевых ресурсов для его изготовления. Минеральный порошок для асфальтобетонной смеси, содержащий однородную смесь из измельченных минерального компонента и гидрофобизатора, в виде смеси жировой композиции, равномерно распределенного по поверхности минерального компонента, содержит в первом варианте (МП-1) цемент при следующем соотношении компонентов, мас. %: отсев дробления известняковых пород 95,83-95; гидрофобизатор 0,37-0,5; цемент ПЦ 500-ДО 3,8-4,5, а во втором варианте (МП-2) - отсев дробления известняковых пород 96,08-95,3; гидрофобизатор 0,12-0,2; цемент ПЦ 500-ДО 3,8-4,5. 2 н.п. ф-лы, 4 ил. Подробнее
Дата
2019-10-14
Патентообладатели
"Общество с ограниченной ответственностью ""Воронежский завод минерального порошка"" "
Авторы
Шаталов Александр Александрович , Серикова Елена Дмитриевна
Способ изготовления гранулированного пеностеклокерамического заполнителя / RU 02723886 C1 20200618/
Открыть
Описание
Предложен способ изготовления гранулированного пеностеклокерамического заполнителя, включающий измельчение цеолитизированной породы, приготовление сырьевой смеси смешиванием измельченной породы с водным раствором гидроксида натрия в соотношении на сухое вещество, мас. %: цеолитизированная порода - 75-80; гидроксид натрия - 15-20, остальное вода, последующее гранулирование смеси, карбонизацию гидроксида натрия в гранулах и обжиг гранул в печи. Гранулированную смесь дополнительно опудривают тугоплавким порошком, при этом карбонизацию гидроксида натрия в гранулах проводят в потоке отходящих газов от сжигания углеродсодержащего топлива в течение 10-30 минут, а обжиг гранул - в диапазоне температур 700-900°С. Технический результат - снижение себестоимости гранулированных пеностеклокерамических заполнителей, изготавливаемых из цеолитизированных пород по щелочной технологии, упрощение технологического процесса и получение заполнителей с более широким диапазоном плотности 100-600 кг/м3. 1 табл. Подробнее
Дата
2019-09-25
Патентообладатели
"Акционерное общество ""Якутский государственный проектный, научно-исследовательский институт строительства"" , Общество с ограниченной ответственностью ""Сунтарэнерго"" "
Авторы
Матвеева Ольга Иннокентьевна , Орлов Александр Дмитриевич , Попов Петр Михайлович , Семенов Константин Валерьевич
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ТЕПЛОИЗОЛЯЦИОННОГО БЕТОНА / RU 02717156 C1 20200318/
Открыть
Описание
Изобретение относится к области строительных материалов и может быть использовано для изготовления изделий, используемых в промышленном и гражданском строительстве. Сырьевая смесь для теплоизоляционного бетона включает, мас.%: портландцемент 48,0 - 54,0, грунт, представленный тонким песком с модулем крупности Мк=0,9 23,6 - 26,1, корунд Al2O3 с удельной поверхностью Sуд.=1500 см2/г 1,4 - 1,9, пенообразующую добавку на протеиновой основе Addiment SB31L 0,2 - 0,4, воду 20,8 - 23,6. Технический результат – повышение прочности на растяжение при изгибе и понижение коэффициента теплопроводности пенобетона. 1 табл., 1 пр. Подробнее
Дата
2019-08-30
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Петербургский государственный университет путей сообщения Императора Александра I"" "
Авторы
Сватовская Лариса Борисовна , Сычева Анастасия Максимовна , Соловьёва Валентина Яковлевна , Степанова Ирина Витальевна , Абу-Хасан Махмуд , Соловьёв Дмитрий Вадимович , Козлов Игорь Сергеевич , Кабанов Александр Александрович
СПОСОБ УПРАВЛЕНИЯ НЕПРЕРЫВНЫМ ПРОЦЕССОМ ПЕРЕЭТЕРИФИКАЦИИ РАПСОВОГО МАСЛА СВЕРХКРИТИЧЕСКИМ ЭТИЛОВЫМ СПИРТОМ / RU 02724886 C1 20200626/
Открыть
Описание
Изобретение относится к автоматическому управлению процессом переэтерификации рапсового масла сверхкритическим этиловым спиртом и может быть использовано в химической, нефтехимической, масложировой, топливной промышленности при получении биодизельной смеси, являющейся исходным продуктом для производства биодизеля. Способ предусматривает стабилизацию температуры переэтерификации воздействием на расход пара из парогенератора в змеевик реактора и давления в реакционной зоне воздействием на мощности приводов насосов высокого давления растительного масла и этилового спирта; непрерывное измерение мощности насосов высокого давления, привода мешалки, установленной в реакционной зоне реактора, насоса отвода биодизельной смеси, вакуум-насоса отвода паров непрореагировавшего спирта и мощности парогенератора; текущих расходов рапсового масла, спирта, биодизельной смеси, паров непрореагировавшего спирта; хладагента на конденсацию паров непрореагировавшего спирта; непрерывное получение информации о концентрации спирта в биодизельной смеси в реакционной зоне. По данным всех параметров вычисляют текущие значения удельных сырьевых и теплоэнергетических потерь, определяют знак из производной по расходу рапсового масла, и если знак производной отрицательный, то увеличивают расход рапсового масла, а если знак положительный, то уменьшают расход рапсового масла; причем по давлению рапсового масла и объемному расходу паров непрореагировавшего спирта определяют текущее значение молярной концентрации этилового спирта в биодизельной смеси по формуле, приведенной ниже, где Хс - молярная концентрация этилового спирта в биодизельной смеси, моль/моль; Рм - давление рапсового масла на входе в реактор, МПа; R - газовая постоянная Дж/K⋅моль; объемный расход паров непрореагировавшего спирта, м3/ч; tp - температура реакции переэтерификации, °С. ! ! 2 ил. Подробнее
Дата
2019-08-27
Патентообладатели
"Федеральное государственное казенное военное образовательное учреждение высшего образования ""Военный учебно-научный центр Военно-воздушных сил ""Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина"" Министерства обороны Российской Федерации "
Авторы
Тертычная Татьяна Николаевна , Ткач Владимир Владимирович , Сердюкова Наталья Алексеевна , Шевцов Александр Анатольевич
УСТАНОВКА РАЗДЕЛЕНИЯ ПРОДУКТОВ КАТАЛИТИЧЕСКОЙ АРОМАТИЗАЦИИ ЛЕГКИХ УГЛЕВОДОРОДОВ / RU 02719385 C1 20200417/
Открыть
Описание
Изобретение относится к установкам получения ароматических углеводородов из углеводородов С3-С4 и может найти применение в нефтегазовой промышленности. Изобретение касается установки разделения продуктов каталитической ароматизации легких углеводородов, включающей блок каталитической переработки, соединенный с аппаратом воздушного охлаждения, сепаратор, компрессор и блок фракционирования. На линии вывода сжатого газа сепарации из компрессора установлен многопоточный рекуперационный теплообменник и сепаратор высокого давления, соединенный линией подачи остатка сепарации с блоком фракционирования, а линией подачи газа сепарации - с блоком криогенного газоразделения, который соединен линией подачи газа отдувки с блоком фракционирования, линией подачи водородсодержащего газа - с блоком выделения водорода, оснащенным линиями вывода водорода и подачи отходящего газа в линию подачи газа сепарации, а линией подачи рециклового метана - с многопоточным рекуперационным теплообменником, после которого последняя соединена с линией подачи сырья после примыкания линии подачи непревращенных компонентов сырья из блока фракционирования с образованием линии подачи сырьевой смеси в блок каталитической переработки. Технический результат - упрощение установки, увеличение выхода ароматических углеводородов и межрегенерационного периода. 1 ил. Подробнее
Дата
2019-08-22
Патентообладатели
Курочкин Андрей Владиславович
Авторы
Курочкин Андрей Владиславович
УСТАНОВКА ДЛЯ РАЗДЕЛЕНИЯ ПРОДУКТОВ КАТАЛИТИЧЕСКОЙ АРОМАТИЗАЦИИ УГЛЕВОДОРОДОВ С3-С4 / RU 02723996 C1 20200618/
Открыть
Описание
Изобретение относится к установкам получения ароматических углеводородов из углеводородов С3-С4 и может найти применение в нефтегазовой промышленности. Изобретение касается установки для разделения продуктов каталитической ароматизации углеводородов С3-С4, включающей блок каталитической переработки, соединенный с аппаратом воздушного охлаждения, блок фракционирования, соединенный с сепаратором линией подачи остатка, и компрессор. На линии вывода сжатого газа сепарации из компрессора установлен многопоточный рекуперационный теплообменник и сепаратор высокого давления, соединенный линией подачи остатка сепарации с блоком фракционирования, а линией подачи газа сепарации - с блоком криогенного газоразделения, соединенным с блоком фракционирования линией подачи газа отдувки, а с многопоточным рекуперационным теплообменником - линиями вывода водородсодержащего газа и подачи рециклового метана, которая после многопоточного рекуперационного теплообменника соединена с линией подачи сырья после примыкания линии подачи непревращенных компонентов сырья из блока фракционирования, с образованием линии подачи сырьевой смеси в блок каталитической переработки. Технический результат - упрощение установки, увеличение выхода ароматических углеводородов и межрегенерационного периода. 1 ил. Подробнее
Дата
2019-08-22
Патентообладатели
Курочкин Андрей Владиславович , Максименко Юрий Михайлович
Авторы
Курочкин Андрей Владиславович , Максименко Юрий Михайлович
УСТРОЙСТВО ДЛЯ ТРЕХМЕРНОЙ ПЕЧАТИ ЗДАНИЙ И АРХИТЕКТУРНО-СТРОИТЕЛЬНЫХ МОДУЛЕЙ / RU 02711637 C1 20200117/
Открыть
Описание
Изобретение относится к аддитивным технологиям методом трехмерной печати и может быть использовано при строительстве зданий, архитектурных и строительных модулей из жестких строительных смесей. Техническим результатом является получение прочных зданий и архитектурно-строительных модулей из жестких строительных смесей сложной геометрической формы. Технический результат достигается тем, что устройство для трехмерной печати зданий и архитектурно-строительных модулей включает установленное на платформе, которая снабжена механизмом для перемещения, устройство для нанесения слоя материала, содержащее емкость для материала и вибратор, а также устройство для заполнения заданного количества сырьевой смеси, при этом емкость для материала выполнена в виде гибкой трансформируемой опалубки, боковые стенки которой выполнены из множества шарнирно соединенных вертикальных прямоугольных пластин, снабженных тягами и механизмами плоскопараллельного взаимного перемещения противоположных пластин, обеспечивающих заданный профиль стен здания, а торцевые стенки выполнены с возможностью поворота относительно горизонтальной оси в верхней точке на угол не менее чем 90°, вибратор выполнен с горизонтальным распространением акустических колебаний и снабжен механизмом ввода в сырьевую смесь, а платформа выполнена с возможностью поворота вокруг своей оси. 1 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-08-06
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Белгородский государственный технологический университет им. В.Г. Шухова"" "
Авторы
Рубанов Юрий Константинович , Чепчуров Михаил Сергеевич , Морева Ирина Юрьевна , Глаголев Евгений Сергеевич , Евтушенко Евгений Иванович , Яковлев Евгений Александрович , Оспищев Петр Иванович , Анцифиров Сергей Игоревич , Бажанов Александр Геральдович , Токач Юлия Егоровна , Лебедев Михаил Сергеевич , Карацупа Сергей Викторович
Пулепоглощающий материал (фибропенобетон) и способ его изготовления / RU 02714541 C1 20200218/
Открыть
Описание
Изобретение относится к средствам обеспечения безопасности при проведении учебно-тренировочных спортивных и боевых стрельб, а именно к средствам для улавливания метаемых элементов (пуль, дробовых снарядов) и их фрагментов, а также предотвращения рикошетов при стрельбах из стрелкового оружия. Сырьевая смесь для изготовления пулепоглощающих антирикошетных элементов из фибропенобетона включает связующее вещество, мелкий заполнитель, пенообразователь, дисперсную арматуру и воду. При этом в качестве связующего используется портландцемент, или его разновидности марки не ниже 400, или строительный гипс марки не ниже Г6, или напрягающий цемент, или вяжущее низкой водопотребности. В качестве дисперсной арматуры используются полиамидные волокна длиной 40-55 мм и диаметром 25-10 мкм, и/или углеродные волокна длиной 18-35 мм и диаметром 9-6 мкм при соотношении компонентов, мас.ч.: связующее – 100, заполнитель мелкий - 155-230, пенообразователь - 0,1-0,8, дисперсная арматура – 1,1-9, вода – остальное. Плотность получаемой смеси находится в диапазоне 1100-1800 кг/м3. Также предложен способ приготовления сырьевой смеси для изготовления пулепоглощающего антирикошетного элемента из фибропенобетона. Обеспечивается изготовление пулепоглощающих антирикошетных облицовок в широком диапазоне эксплуатационных свойств, повышение надежности, долговечности и эффективности тренировочных и защитных объектов, подвергающихся воздействию метаемых снарядов, снижение трудоемкости и материалоемкости их изготовления, а также обеспечение защиты лиц, принимающих участие в стрельбах, от поражения вторичными осколками. 2 н. и 2 з.п. ф-лы, 1 табл., 1 пр. Подробнее
Дата
2019-07-25
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Донской государственный технический университет"" , Вотрин Денис Аркадьевич "
Авторы
Вотрин Денис Аркадьевич , Моргун Любовь Васильевна , Виснап Антон Валерьевич , Моргун Владимир Николаевич
Композиционная сырьевая смесь для изготовления дорожных покрытий / RU 02712215 C1 20200127/
Открыть
Описание
Изобретение относится к строительным материалам и может быть использовано в дорожном строительстве. Предложена композиционная сырьевая смесь для изготовления дорожных покрытий, содержащая (в мас.%): промышленный отход металлургического производства - доменный основной гранулированный шлак (46-49), органоминеральную добавку - комплексную добавку, состоящую из «Линамикс ПК» (1-3) и битумной эмульсии (4-6), и кремнеземсодержащий компонент - гидроотвальную низкокальциевую буроугольную золу ТЭС (44-47). Технический результат - снижение пористости и повышение прочности и значений коэффициентов водостойкости, гидравличности и конструктивного качества получаемого материала. 2 табл., 4 пр. Подробнее
Дата
2019-07-25
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Тульский государственный университет"" "
Авторы
Александров Александр Владимирович , Рябов Геннадий Гаврилович , Качурин Николай Михайлович
СПОСОБ ПОЛУЧЕНИЯ ТЕРЕФТАЛАТНОГО И БЕНЗОАТНОГО ПЛАСТИФИКАТОРОВ ИЗ ПОБОЧНЫХ ПРОДУКТОВ / RU 02708641 C1 20191210/
Открыть
Описание
Изобретение относится к способу получения терефталатного и бензоатного пластификаторов ПВХ с использованием в качестве сырья побочных продуктов химических производств – кислоты терефталевой технической обводненной (КТТО) и кубового остатка ректификации 2-этилгексанола (КОРЭГ). Способ характеризуется тем, что из КОРЭГ выделяют две спиртовые фракции – 2-этилгексанольную при давлении 8-14 мм рт.ст. и температуре паров 40-110°С с содержанием 2-этилгексанола от 45 до 75 мас.% и диольную при давлении 8-14 мм рт.ст. и температуре паров 110-200°С с содержанием 2,4-диэтил-1,3-октандиола от 25 до 50 мас.% – и проводят сначала этерификацию предварительно осушенной КТТО 2-этилгексанольной фракцией с получением терефталатного пластификатора и 2-этилгексиловых эфиров бензойной и толуиловой кислот, отгоняют от терефталатного пластификатора при давлении 8-14 мм рт.ст. и температуре паров в интервале 80-200°С бензоатную фракцию, содержащую от 70 до 90 мас.% смеси 2-этилгексиловых эфиров толуиловой и бензойной кислот, и проводят переэтерификацию бензоатной фракции диольной фракцией, взятых из расчета мольного соотношения 2,4-диэтил-1,3-октандиола и эфиров бензойной и толуиловой кислот в интервале 1:1,5-2,0, при атмосферном давлении и температуре в кубе 180-280°С с одновременной отгонкой выделяющейся 2-этилгексанольной фракции, затем отгоняют непрореагировавшие соединения при давлении 8-14 мм рт.ст. и температуре паров 50-200°С и получают в кубе бензоатный пластификатор, состоящий из смеси эфиров бензойной и толуиловой кислот с 2,4-диэтил-1,3-октандиолом. Технический результат – разработка способа получения недорогих пластификаторов ПВХ, расширение сырьевых источников, более полная переработка побочных продуктов, уменьшение количества отходов. 3 з.п. ф-лы, 1 пр. Подробнее
Дата
2019-07-22
Патентообладатели
ЛАКЕЕВ СЕРГЕЙ НИКОЛАЕВИЧ
Авторы
ЛАКЕЕВ СЕРГЕЙ НИКОЛАЕВИЧ , Щербаков Василий Васильевич
Сырьевая смесь для защитного покрытия / RU 02720171 C1 20200427/
Открыть
Описание
Изобретение относится к области строительных материалов и может быть использовано для защиты поверхностей выработанных шахт. Технический результат - повышение адгезионной прочности защитного покрытия к поверхности породы и уменьшение паропроницаемости затвердевшего защитного покрытия. Сырьевая смесь для защитного покрытия содержит, мас.%: портландцемент 37,0-40,0; песок фракции 0,125 мм 27,0-27,5; микрокальцит фракции 100 мкм 11,2-11,8; тонкомолотый магнезиальный известняк с удельной поверхностью 320 м2/кг 7,5- 9,0; комплексную добавку 0,9-1,0; воду 13,4-13,7. Комплексная добавка содержит, мас.%: нитрит калия KNO2 2,8-3,3; полимерсодержащий компонент Sika Viscocrete 225 на основе эфира аллила и ангидрита малеиновой кислоты 96,7-97,2. 2 табл., 1 пр. Подробнее
Дата
2019-07-17
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Петербургский государственный университет путей сообщения Императора Александра I"" "
Авторы
Сватовская Лариса Борисовна , Сычева Анастасия Максимовна , Сахарова Антонина Сергеевна , Соловьёва Валентина Яковлевна , Степанова Ирина Витальевна , Абу-Хасан Махмуд , Соловьёв Дмитрий Вадимович , Козлов Игорь Сергеевич
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ЗАЩИТНОГО ПОКРЫТИЯ / RU 02720170 C1 20200427/
Открыть
Описание
Изобретение относится к области строительных материалов и может быть использовано для защиты каменноугольных и бетонных поверхностей. Технический результат - повышение солестойкости и трещиностойкости защитного покрытия. Сырьевая смесь для защитного покрытия содержит, мас.%: портландцемент 41,2-42,9; песок фракции 0,125 мм 31,0-31,5; микрокальцит фракции 100 мкм 7,5-7,9; тонкомолотый магнезиальный известняк с удельной поверхностью 320 м2/кг 10,5-11,0; комплексную добавку 0,8-0,9; воду 7,3-7,5. В качестве комплексной добавки используют смесь, содержащую, мас.%: нитрит калия KNO2 71,5-72,0; золь кремниевой кислоты с плотностью ρ=1,021 г/см3 и значением водородного показателя рН=3,5 25,0-26,0; полимерсодержащий компонент Sika Viscocrete 225 на основе эфира аллила и ангидрита малеиновой кислоты 2,0-3,5. 2 табл., 1 пр. Подробнее
Дата
2019-07-09
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Петербургский государственный университет путей сообщения Императора Александра I"" "
Авторы
Иванова Вера Ефимовна , Сватовская Лариса Борисовна , Сычева Анастасия Максимовна , Сахарова Антонина Сергеевна , Соловьёва Валентина Яковлевна , Степанова Ирина Витальевна , Абу-Хасан Махмуд , Соловьёв Дмитрий Вадимович
Бетонная смесь / RU 02719895 C1 20200423/
Открыть
Описание
Изобретение относится к строительству, в частности к составам сырьевых смесей для приготовления пенобетона со звукопоглощающими свойствами, и может быть использовано для возведения звукопоглощающих стен зданий, обеспечивающих защиту внутренних помещений от шумового воздействия, в том числе, от воздействия акустического оружия в условиях шумовой агрессии, а также ограждающих конструкций, снижающих уровень шума. Бетонная смесь для приготовления звукопоглощающего пенобетона содержит, кг на 1 м3 бетона: портландцемент ЦЕМ I 42,5Н 282-302, известняк 41-49, гипс 33-39, золу уноса 36-44, кварцевый песок с максимальной крупностью частиц 2 мм 52-62, стеклянную крошку с размером частиц 45-90 мкм 38-46, поликарбоксилатный гиперпластификатор 5,1-5,3, синтетический углеводородный пенообразователь 1,5-1,7, воду - остальное. Технический результат - улучшение звукопоглощающих характеристик пенобетона, повышение их стабильности при одновременном упрощении технологии производства и утилизация отходов. 2 табл., 3 пр. Подробнее
Дата
2019-07-03
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Владивостокский государственный университет экономики и сервиса"" "
Авторы
Федюк Роман Сергеевич , Баранов Андрей Вячеславович , Лисейцев Юрий Леонидович , Лесовик Валерий Станиславович , Попов Егор Александрович
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПЕНОБЕТОНА / RU 02713291 C1 20200204/
Открыть
Описание
Изобретение относится к области строительных материалов и может быть использовано для изготовления легкого бетона, используемого в промышленном и гражданском строительстве. Сырьевая смесь для пенобетона содержит, мас.%: портландцемент 46,10-48,60, песок с удельной поверхностью Sуд.=200 м2/кг 11,0-11,52, 25%-ный раствор поликарбоксилатного полимера CP-WRM, представленного сополимером акриловой кислоты и этилового эфира метакриловой кислоты со значением водородного показателя рН 6, плотностью ρ=1,033 г/см3, 0,42-0,46, пеностекло гранулированное с размером частиц 1,25 мм и насыпной плотностью ρ=250 кг/м3 18,48-19,47, воду 21,5-22,45. Технический результат - повышение прочности на сжатие и понижение коэффициента теплопроводности пенобетона. 1 табл., 1 пр. Подробнее
Дата
2019-06-27
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Петербургский государственный университет путей сообщения Императора Александра I"" "
Авторы
Иванова Вера Ефимовна , Сватовская Лариса Борисовна , Сычева Анастасия Максимовна , Соловьёва Валентина Яковлевна , Степанова Ирина Витальевна , Абу-Хасан Махмуд , Соловьёв Дмитрий Вадимович , Козлов Игорь Сергеевич
Способ получения цитратного пластификатора / RU 02699018 C1 20190903/
Открыть
Описание
Изобретение относится к способу получения цитратного пластификатора ПВХ с использованием в качестве сырья побочных продуктов производства – сивушного масла и кубового остатка ректификации 2-этилгексанола (КОРЭГ). Способ получения цитратного пластификатора этерификацией лимонной кислоты спиртами характеризуется тем, что для этерификации лимонной кислоты используют спиртовую фракцию, полученную либо из сивушного масла фракционной перегонкой при атмосферном давлении и температуре паров 95-145°С с содержанием изоамиловых спиртов от 85 до 99 мас. %, либо из кубового остатка ректификации 2-этилгексанола фракционной перегонкой при давлении 8-14 мм рт.ст. и температуре паров 60-155°С с содержанием 2-этилгексанола от 45 до 75 мас. %, при этом процесс этерификации ведут кипячением при атмосферном давлении смеси лимонной кислоты и спиртовой фракции, взятых в количестве, обеспечивающем мольное отношение лимонной кислоты и спиртов 1:3,2-5,0, с одновременной отгонкой выделяющейся в процессе реакции воды в виде азеотропа, сначала без катализатора, а после замедления скорости реакции в присутствии катализатора в количестве 0,05-2,5 мас. % от массы лимонной кислоты до достижения кислотного числа реакционной массы 1-5 мг КОН/г, с последующей отгонкой непрореагировавших соединений при пониженном давлении, нейтрализацией и выделением продукта. Технический результат заключается в расширении сырьевой базы спиртов для получения недорогих цитратных пластификаторов, в квалифицированной утилизации промышленных отходов. 2 пр. Подробнее
Дата
2019-06-14
Патентообладатели
ЛАКЕЕВ СЕРГЕЙ НИКОЛАЕВИЧ
Авторы
ЛАКЕЕВ СЕРГЕЙ НИКОЛАЕВИЧ , Щербаков Василий Васильевич
Способ получения нефтяного кокса (варианты) / RU 02719849 C1 20200423/
Открыть
Описание
Изобретения относятся к нефтеперерабатывающей промышленности, в частности к вариантам способа получения нефтяного кокса замедленным коксованием нефтяного сырья с различным содержанием летучих веществ. Способ включает нагрев исходного сырья коксования, подачу его в дополнительную колонну с образованием вторичного сырья с последующим его нагревом до 475°С, подачей в коксовую камеру и фракционированием газопаровых продуктов коксования в ректификационной колонне. При этом, согласно первому варианту получения кокса с повышенным содержанием летучих веществ, теплоноситель - смесь тяжелого и кубового газойлей коксования нагревают в печи до температуры 510°С, затем подают в реакционную камеру и далее через редукционный клапан с давлением на 0,1 МПа выше, чем в коксовой камере, и температурой не ниже температуры сырья коксования подают в низ коксовой камеры. Согласно второму варианту, для получения кокса с низким содержанием летучих веществ теплоноситель с температурой 510°С вводят в горячий сырьевой поток с температурой 505°С, а затем подают в коксовую камеру. Технический результат - увеличение выхода компонентов моторных топлив и повышение производительности установки коксования. 2 н. и 4 з.п. ф-лы, 1 табл., 1 ил. Подробнее
Дата
2019-05-13
Патентообладатели
"Акционерное общество ""Институт нефтехимпереработки"" "
Авторы
Хайрудинов Ильдар Рашидович , Тихонов Анатолий Аркадьевич , Султанов Талгат Хатмуллович
Способ изотопного восстановления регенерированного урана / RU 02702620 C1 20191009/
Открыть
Описание
Изобретение относится замыканию ядерного топливного цикла и может быть использовано для возврата урана, выделенного из отработавшего ядерного топлива (ОЯТ), в топливный цикл как легководных реакторов, так и других типов реакторов, работающих на обогащенном уране. Способ изотопного восстановления регенерированного урана предусматривает повышение содержания изотопа 235U до 3-5 мас. % в регенерированном уране при понижении абсолютной и/или относительной концентрации четных изотопов урана, с разделением изотопов сырьевого уранового регенерата на установке из двух последовательных газоцентрифужных каскадов. Причем обогащают сырьевой урановый регенерат по делящемуся изотопу уран-235 в первом газоцентрифужном ординарном каскаде до содержания 5-15 мас. %. 235U, для получения товарной изотопной смеси отвал второго каскада содержащего 5-14 мас. %. 235U смешивают с низкообогащенным ураном-разбавителем природного происхождения и концентрацией 235U 3-5 мас. %, а отборный поток второго каскада обогащенный по 235U до 20 мас. % направляют в емкость для хранения. После выдержки и радиохимической очистки смешивают с регенерированным ураном следующей партии на входе первого газоцентрифужного каскада. Техническим результатом является исключение опасных высоких концентраций делящегося изотопа 235U не более 20% по изотопу 235U на любых стадиях процесса, обеспечение полного возврата регенерированного урана в воспроизводство топлива за счет отсутствия неиспользованного регенерата, направляемого на длительное складское хранение. 1 з.п. ф-лы, 1 табл., 1 ил. Подробнее
Дата
2019-04-04
Патентообладатели
"Федеральное государственное бюджетное учреждение ""Национальный исследовательский центр ""Курчатовский институт"" "
Авторы
Невиница Владимир Анатольевич , Смирнов Андрей Юрьевич , Сулаберидзе Георгий Иванович , Фомиченко Петр Анатольевич
Сырьевая смесь для производства неавтоклавного газобетона / RU 02719804 C1 20200423/
Открыть
Описание
Изобретение относится к промышленности строительных материалов, а именно к сырьевым смесям для производства неавтоклавного газобетона, и может быть использована для производства теплоизоляционных и конструкционно-теплоизоляционных газобетонов. Сырьевая смесь для производства неавтоклавного газобетона включает, мас.%: вяжущее вещество – гашеную кальциевую известь 12 – 21 и портландцемент 12 – 21, отходы камнепиления и обработки мраморовидного известняка крымского месторождения 24 – 42, алюминиевую пудру 0,05 – 0,07, воду остальное. Технический результат – повышение прочности и теплоизоляционных свойств изделий из неавтоклавного газобетона низкой плотности. 4 пр. Подробнее
Дата
2019-03-20
Патентообладатели
"Федеральное Государственное Автономное Образовательное Учреждение Высшего Образования ""Крымский Федеральный Университет Имени В.И. Вернадского"" "
Авторы
Николаенко Елена Юрьевна , Любомирский Николай Владимирович , Николаенко Виталий Витальевич , Бахтин Александр Сергеевич
Способ изготовления гипсовых изделий на основе отходов производства базальтовых волокон / RU 02708766 C1 20191211/
Открыть
Описание
Изобретение относится к области производства строительных материалов, а именно - способам повышения прочности гипсовых изделий, и может найти применение при производстве стеновых блоков, плит, панелей, мелкоштучных изделий из гипса. Способ изготовления гипсовых изделий на основе отходов производства базальтовых волокон включает дозирование, смешивание полуводного гипса с отходами производства базальтовых волокон в течение 1 минуты. Затворяют смесь полуводного гипса с отходами производства базальтовых волокон насыщенным раствором извести гашеной при следующем соотношении, мас.%: полуводный гипс - 66,4-66,8, отход производства базальтовых волокон - 6,64-6,7, насыщенный раствор извести гашеной - 0,027-0,035, вода - остальное, затем формуют и выдерживают изделие, полученное из этой смеси, при температуре 20-25°С и влажности 50-60% в течение 6-7 суток в диоксиде углерода при давлении 0,010-0,015 МПа. Полученную сырьевую смесь перемешивают в течение 30-40 секунд Технический результат - повышение прочности, снижение стоимости изделий из гипса, а также снижение трудо- и энергоемкости, упрощение технологии их производства. 2 пр. Подробнее
Дата
2019-02-20
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Тверской государственный технический университет"" "
Авторы
Завадько Мария Юрьевна , Петропавловская Виктория Борисовна , Новиченкова Татьяна Борисовна
Сырьевая смесь для производства крупноформатных силикатных изделий / RU 02711648 C1 20200117/
Открыть
Описание
Изобретение относится к области строительных материалов и может быть использовано при изготовлении строительной смеси для производства силикатных камней, блоков и плит. Сырьевая смесь для производства крупноформатных силикатных изделий включает известково-кремнеземистое вяжущее с активностью 35-40% и удельной поверхностью 5000-6000 см2/г, получаемое совместным помолом смеси кварцевого песка и извести с активностью 70-80% в соотношении 1:1, песок кварцевый с модулем крупности 1,1-1,3, дополнительно содержит дробленый керамзитовый песок фракции 0-5 мм, получаемый путем дробления керамзитового гравия фракции 20-40 мм как максимально вспученного с насыпной плотностью 550-600 кг/м3, модулем крупности 3,8, при следующем соотношении компонентов, масс. %: известково-кремнеземистое вяжущее 18, песок кварцевый 42-62, дробленый керамзитовый песок 20-40. Технический результат - повышение прочности и трещиностойкости сырца при сохранении прочности бетона и снижении его плотности. 2 табл. Подробнее
Дата
2019-01-10
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Тюменский индустриальный университет"" "
Авторы
Панченко Юлия Федоровна , Панченко Дмитрий Алексеевич