Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
СПОСОБ ПОЛУЧЕНИЯ КУСКОВОГО СИЛИКАГЕЛЯ / RU 02723623 C1 20200616/
Открыть
Описание
Изобретение относится к способам получения технического кускового силикагеля. Способ получения кускового силикагеля включает смешивание раствора жидкого стекла с раствором серной кислоты при 15-25°C, гелирование раствора при температуре 15-30°C в течение 20-40 часов, измельчение, отмывку и термическую обработку. Согласно способу рН раствора, полученного при смешении растворов жидкого стекла и серной кислоты, находится в диапазоне 0-4. Силикагель обрабатывают водным раствором аммиака. Изобретение обеспечивает получение кускового силикагеля, характеризующегося удельной поверхностью 200-400 м2/г, влагопоглощением более 1 см3/г и гидролитической стабильностью. 1 табл., 3 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ ""ИНЖИНИРИНГОВЫЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ЦЕНТР"" , Утаганова Альфия Радифовна "
Авторы
Князев Алексей Сергеевич , Мазов Илья Николаевич , Мамонтов Григорий Владимирович , Вышегородцева Елена Васильевна , Савельева Анна Сергеевна , Утаганова Альфия Радифовна
Хромсодержащий катализатор жидкофазного синтеза метанола и способ его получения / RU 02721547 C1 20200520/
Открыть
Описание
Изобретение относится к химической промышленности, а именно к производству гетерогенных катализаторов процесса жидкофазного синтеза метанола, и может быть применено на предприятиях химической промышленности для получения метанола, который используется в качестве растворителя, экстрагента и сырья для синтеза формальдегида, сложных эфиров органических и неорганических кислот и добавок к топливу. Хромсодержащий катализатор жидкофазного синтеза метанола содержит сверхсшитый полистирол в качестве носителя и активный металл. Согласно изобретению в качестве активного металла используется хром, при этом содержание хрома в катализаторе составляет от 4 до 6 мас.%, а содержание сверхсшитого полистирола - 94÷96 мас.%. Используют сверхсшитый полистирол с площадью внутренней поверхности 950÷1050 м2/г. Способ получения хромсодержащего катализатора жидкофазного синтеза метанола включает обработку сверхсшитого полистирола раствором соли активного металла в тетрагидрофуране, дистиллированной воде и метаноле, приготовленном под током азота, высушивание, продувку азотом с расходом 30±5 мл/мин в течение 30±5 мин, продувку водородом с расходом 30±5 мл/мин в течение 30±5 мин, восстановление водородом, охлаждение до комнатной температуры и продувку азотом с расходом 30±5 мл/мин в течение 30±5 мин. Согласно изобретению в качестве раствора соли активного металла используют раствор ацетата хрома концентрацией 3,6÷3,7 мас.%, обработку носителя раствором ацетата хрома осуществляют сначала смешиванием в течение 10±0,5 мин, далее - с использованием ультразвука с частотой 60±0,5 кГц, мощностью 75±1 Вт в течение 2±0,1 мин, высушивание проводится при 105±5°C в течение 1±0,1 ч, а восстановление водородом проводится при 350±10°С с расходом 10±1 мл/мин в течение 3±0,1 ч. Технический результат изобретения – повышение активности, селективности и операционной стабильности гетерогенного катализатора в реакции жидкофазного синтеза метанола. 2 н. и 1 з.п. ф-лы, 26 пр. Подробнее
Дата
2019-12-18
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Тверской государственный университет"" "
Авторы
Тихонов Борис Борисович , Матвеева Валентина Геннадьевна , Косивцов Юрий Юрьевич , Манаенков Олег Викторович , Григорьев Максим Евгеньевич , Долуда Валентин Юрьевич
СПОСОБ УПРАВЛЕНИЯ РЕКТИФИКАЦИОННОЙ КОЛОННОЙ ВЫДЕЛЕНИЯ ИЗОПЕНТАНА / RU 02722132 C1 20200526/
Открыть
Описание
Изобретение относится к способам автоматического управления процесса ректификации и может быть использовано в области нефтегазопереработки и нефтегазохимии, в частности применительно к колоннам выделения индивидуальных углеводородов или фракционирования узких фракций. Способ управления ректификационной колонной выделения изопентана включает установку датчиков температуры на контрольных тарелках, дефлегматора в верхней части колонны, вход которого соединен с верхом колонны, теплообменника с регулятором в нижней части колонны. Колонна содержит рефлюксную емкость с датчиком уровня. Вход рефлюксной емкости соединен с выходом дефлегматора, выход рефлюксной емкости соединен через первый регулятор (орошения) с входом орошения колонны и входом второго регулятора, соединенного с выходной трубой. Контроллер первого регулятора подключен к первому и второму термометрам, установленным на двух контрольных тарелках в верхней части колонны. Задание первому регулятору формируют используя сигнал разности температур между первым и вторым термометром. Контроллер второго регулятора (соотношения расходов) подключен входами к датчикам расходов, первый из которых установлен на выходной трубе (до второго регулятора), второй на входе орошения (на трубе орошения после первого регулятора). Выход контроллера соотношения расходов формирует задание второго регулятора. Выход датчика уровня рефлюксной емкости формирует задание третьему регулятору, регулирующему подачу тепловой энергии в теплообменник в нижней части колонны. Технический результат: повышение стабильности работы ректификационной колонны, повышение энергоэффективности при сохранении качества получаемой продукции. 5 з.п. ф-лы, 1 ил. Подробнее
Дата
2019-12-16
Патентообладатели
"ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ""НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНЫЙ ИНСТИТУТ НЕФТЕПЕРЕРАБАТЫВАЮЩЕЙ И НЕФТЕХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ"" "
Авторы
Зуйков Александр Владимирович , Боброва Анастасия Андреевна , Дитинич Игорь Владиславович , Абдурагимов Рамазан Абдулмуталибович , Максимова Александра Викторовна , Харламова Марина Алексеевна , Иванова Екатерина Романовна
Способ обеспечения температурной стабильности параметров молекулярно-электронного преобразователя в области высоких частот / RU 02724303 C1 20200622/
Открыть
Описание
Изобретение относится к измерительной технике, в частности к способу обеспечения температурной стабильности параметров молекулярно-электронных преобразователей, используемых в линейных и угловых акселерометрах. Это изобретение может найти применение в сейсмодатчиках, датчиках для стабилизации движущихся объектов и систем инерциальной навигации, акселерометрах и гидрофонах высокой стабильности и точности. В предлагаемом изобретении задача решена за счет того, что фоновый ток, протекающий через катоды преобразующего элемента, управляется специально разработанной электронной цепью в зависимости от температуры окружающей среды. Для этого в рабочей жидкости преобразователя на расстоянии от 2 до 50 мм от анодов устанавливают дополнительные электроды, находящиеся при потенциале на 100-500 мВ выше потенциала катодов, а через аноды пропускается ток, величина которого зависит от температуры по определенному закону. Действие тока, проходящего через аноды, состоит в управляемом температурой изменении анодной концентрации, которая повышается при увеличении тока и уменьшается в обратном случае. Технический результат - обеспечение точности измерения молекулярно-электронными преобразователями угловых и линейных движений и акустических сигналов в широком температурном диапазоне. 11 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-12-10
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Московский физико-технический институт "" "
Авторы
Агафонов Вадим Михайлович , Егоров Егор Владимирович , Егоров Иван Владимирович
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НАЧАЛА ИЗМЕНЕНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ПРЕДЕЛЬНОЙ ТЕМПЕРАТУРЫ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ / RU 02722119 C1 20200526/
Открыть
Описание
Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение времени, через равные промежутки времени пробу окисленного смазочного материала взвешивают, часть пробы фотометрируют и определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности. По данным показателям термоокислительной стабильности вычисляют количество тепловой энергии, поглощенной продуктами окисления, продуктами испарения, и суммарную поглощенную тепловую энергию при термостатировании смазочного материала, которое определяют произведением значения температуры, умноженной на время испытания и значение соответствующего показателя термоокислительной стабильности. Вычисляют десятичные логарифмы поглощенной тепловой энергии для каждого показателя и строят графические зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от десятичного логарифма времени и температуры испытания. По этим зависимостям определяют значения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при заданном десятичном логарифме времени испытания и температурах испытания. Также определяют значения десятичного логарифма времени испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре. Кроме того, определяют значения десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре. На основании полученных данных для каждого показателя строят дополнительные графические зависимости. При этом по зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания определяют температуру начала изменения десятичного логарифма поглощенной тепловой энергии при заданном десятичном логарифме времени испытания. По зависимости десятичного логарифма времени испытания от температуры испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности определяют предельную температуру работоспособности исследуемого смазочного материала, а по зависимости десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания прогнозируют начало изменения десятичного логарифма поглощенной тепловой энергии для других температур. Технический результат - повышение информативности контроля смазочных материалов для сравнения их качества и выбора. 3 ил., 1 табл. Подробнее
Дата
2019-12-04
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Сибирский федеральный университет"" "
Авторы
Ковальский Болеслав Иванович , Лысянникова Наталья Николаевна
Способ получения курительной композиции для кальяна / RU 02721353 C1 20200519/
Открыть
Описание
Изобретение относится к табачной промышленности, а именно к технологии получения табачных смесей, используемых для курения в кальянах. В заявленном способе получения курительной композиции для кальяна используют табачное сырьё на основе смеси табаков ботанического сортотипа Берлей, подвергшейся предварительной процедуре тестирования с использованием высокосахаристых соусов, и имеющей уровень рН 5,0 - 7,0, которую кондиционируют до параметров, необходимых для резки, осуществляют резку табачного сырья, соусирование табачного сырья подогретой до 50 - 70°С гомогенной смесью глюкозо-фруктозного сиропа, имеющего значения рН 3,5 – 5,0 и кислотность 4,0 см3 с массовой долей сухих веществ 70,0 - 71,5 %, а также с содержанием глюкозы 40,0 - 44,0 мас.% и фруктозы 50,0 - 57,0 мас.%, и глицерина пищевого, с получением композитной смеси и последующей первичной ферментацией композитной смеси в течение 5 - 10 часов при температуре 18 - 25°С, затем вторичной ферментацией в течение 1 - 3 часов при постоянном перемешивании композитной смеси при температуре 120 - 140°С с последующим в течение 15 - 20 минут быстрым охлаждением до температуры 18 - 25°С, далее осуществляют финишное нанесение натуральных, либо идентичных натуральным ароматических добавок в количестве 1,0 - 12,0 % от общей массы композитной смеси с последующей отлёжкой композитной смеси перед упаковкой. Изобретение позволяет получить курительную композицию для кальяна, которая в свою очередь позволяет получить дым с устойчивым оригинальным вкусо-ароматическим профилем в течение длительного времени (60-80 минут) курения при сохранении вкусовой плотности и стабильности аромата букета дыма. Подробнее
Дата
2019-11-21
Патентообладатели
"Акционерное общество ""Погарская сигаретно-сигарная фабрика"" "
Авторы
МОИСЕЕВ Игорь Викторович , БАРАНОВ Виктор Николаевич , САВИН Владимир Минович , ЛЕЗНЫЙ Валерий Владимирович , ПРИХОДЬКО Роман Петрович , СИНДИНОВА Татьяна Петровна
СТАБИЛИЗАТОР ТЕМПЕРАТУРЫ В СИСТЕМЕ С ЖИДКИМ ТЕПЛОНОСИТЕЛЕМ / RU 02720885 C1 20200513/
Открыть
Описание
Изобретение относится к области электротехники, а именно к стабилизатору температуры в системе c жидким теплоносителем, который может найти применение для обеспечения стабильности заданной температуры в «горячей» магистрали системы с жидким теплоносителем, например в солнечных нагревательных коллекторах. Стабилизатор температуры содержит насос и задатчик требуемого значения температуры теплоносителя, при этом насос выполнен в виде камеры с входным и выходным штуцерами и с примыкающей к ней другой камерой с входным клапаном и испарителем с низкокипящей жидкостью и третьей камерой с выходным клапаном и упругой емкостью, соединенной с испарителем пневматической связью через выполненный в виде упругого баллона запорный элемент перепускного клапана. Кроме того, вторая камера насоса сообщается с третьей камерой через седло перепускного клапана, а блок управления или задатчик силы размещен между упругой емкостью и дном третьей камеры. Повышение надежности работы стабилизатора температуры в системе с жидким теплоносителем является техническим результатом изобретения. 1 ил. Подробнее
Дата
2019-11-15
Патентообладатели
Савостьянов Валерий Павлович
Авторы
Савостьянов Валерий Павлович
Рабочий электролит для конденсатора, способ его приготовления и алюминиевый электролитический конденсатор с таким электролитом / RU 02715998 C1 20200305/
Открыть
Описание
Изобретение относится к области электротехники, а именно к алюминиевому оксидно-электролитическому конденсатору на номинальное напряжение 160-450 В с диапазоном рабочих температур от минус 60 до плюс 125°С, а также к рабочему электролиту для него и способу приготовления электролита. Рабочий электролит содержит: смесь органических растворителей на основе гамма-бутиролактона, сорастворитель, выбранный из пирролидонов, нитрилов, циклических карбонатов, формамидов для снижения температуры замерзания, сорастворитель для улучшения смачиваемости сепаратора рабочим электролитом, выбранный из многоатомных спиртов или эфиров, неорганическую кислоту, или ее соль, или оксид, обладающий кислотными свойствами, карбоновую кислоту, амин, газопоглощающую добавку и воду, при этом основной растворитель занимает 30-70 мас. %, сорастворитель для снижения температуры замерзания рабочего электролита - 10-40 мас. %, сорастворитель для улучшения смачиваемости сепаратора - 1-10 мас. %, неорганическая кислота, или ее соль, или кислый оксид - 1-10 мас. %, карбоновая кислота - 0,5-10 мас. %, амин - 0,5-10 мас. %, газопоглощающая добавка - 0,5-7 мас. %, вода - 0,1-2,5 мас. %. Способ приготовления рабочего электролита включает загрузку γ-бутиролактона в реактор при температуре окружающей среды, перемешивание его со скоростью 60 оборотов в минуту, загрузку сорастворителей, нитроанизола и неорганической кислоты, перемешивание смеси до полного растворения, нагрев смеси не выше плюс 115°С, загрузку амина, перемешивание до полного растворения, загрузку карбоновой кислоты, перемешивание до полного растворения, нагрев смеси до температуры, равной или превышающей 125°С, и охлаждение смеси до температуры окружающей среды при постоянном перемешивании. Снижение сопротивления и тангенса угла диэлектрических потерь алюминиевого электролитического конденсатора, а также повышение стабильности характеристик рабочего электролита и конденсатора в диапазоне температур от минус 60 до +125°С в течение всего срока службы конденсатора является техническим результатом изобретения. 3 н. и 6 з.п. ф-лы, 9 табл. Подробнее
Дата
2019-10-16
Патентообладатели
"Открытое акционерное общество ""Элеконд"" "
Авторы
Степанов Александр Викторович , Волков Сергей Владимирович , Мехряков Александр Яковлевич , Суханова Людмила Алексеевна , Ковин Сергей Анатольевич , Юшков Николай Владимирович
ИСТОЧНИК ОПОРНОГО ТОКА ДЛЯ ЗАДАЧ СТАБИЛИЗАЦИИ СТАТИЧЕСКОГО РЕЖИМА ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ / RU 02711350 C1 20200116/
Открыть
Описание
Изобретение относится к области радиотехники и микроэлектроники и может быть использовано в аналоговых микросхемах и аналого-цифровых интерфейсах датчиков, работающих в тяжелых условиях эксплуатации (низкие температуры, проникающая радиация). Технический результат: повышение стабильности выходного тока устройства, в том числе при криогенных температурах; создание условий, которые позволяют управлять численными значениями допустимого диапазона изменений напряжений на первом и втором токовых выходах; обеспечение одинаковых свойств первого и второго токовых выходов, при которых напряжения на этих выходах могут изменяться независимо друг от друга. Источник опорного тока для задач стабилизации статического режима операционных усилителей при низких температурах, содержащий первый (1) токовый выход устройства, согласованный с первой (2) шиной источника питания, второй (3) токовый выход устройства, согласованный со второй (4) шиной источника питания, первый (5) выходной транзистор, сток которого подключен ко второму (3) токовому выходу устройства, исток соединен со стоком первого (6) вспомогательного транзистора, а затвор соединен с истоком первого (6) вспомогательного транзистора, вспомогательный резистор (7). В схему введен второй (8) вспомогательный полевой транзистор, сток которого связан с первым (1) токовым выходом устройства, затвор подключен к истоку первого (5) выходного транзистора, а исток связан с истоком первого (6) вспомогательного транзистора через вспомогательный резистор (7), причем затвор первого (6) вспомогательного транзистора подключен к управляющему входу (9) устройства. Управляющий вход (9) устройства связан с общей шиной (10) первого (2) и второго (4) источников питания. 1 з.п. ф-лы, 4 ил. Подробнее
Дата
2019-10-11
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Донской государственный технический университет"" "
Авторы
Титов Алексей Евгеньевич , Прокопенко Николай Николаевич , Бугакова Анна Витальевна
Способ диагностирования цепей измерения температур / RU 02724247 C1 20200622/
Открыть
Описание
Изобретение относится к измерительной технике и может быть использовано в системах автоматического измерения, управления и аварийной защиты, в состав которых входят измерители температуры на основе термопар. Предложен способ диагностирования цепей измерения температур включает нагрев термопар с последующим измерением температур и анализом результатов измерения температур. При этом проводят нагрев холодных спаев термопар, а анализ проводят путем сравнения температур холодного спая и температур измеряемой среды до и после нагрева, причем исправность цепей измерения температуры выявляют по величине приращения температуры холодного спая ΔТХС и стабильности температуры измеряемой среды. Технический результат - упрощение схемы диагностирования и обеспечение непрерывного контроля температуры во время проведения диагностирования. 1 ил. Подробнее
Дата
2019-10-09
Патентообладатели
"Акционерное общество ""Научно-исследовательский институт физических измерений"" "
Авторы
Мухатаев Николай Афанасьевич
ЗАГУСТИТЕЛЬ НА ОСНОВЕ КАТИОННОГО ПОЛИМЕРА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ТЕРМОСТОЙКАЯ ЖИДКОСТЬ ДЛЯ ГИДРОРАЗРЫВА ПЛАСТА, ПОЛУЧАЕМАЯ С ЕГО ИСПОЛЬЗОВАНИЕМ / RU 02722804 C1 20200604/
Открыть
Описание
Изобретение относится к загустителю на основе катионного полимера, получаемого следующим образом: используя метанол в качестве растворителя, N,N-диметил-1,3-пропандиамин и бензальдегид нагревают с обратным холодильником при 70°C в течение 2–12 ч; температуру реакционной системы понижают до 0–5°C; несколько раз добавляют борогидрид натрия в малых количествах; получают N1-бензил-N3,N3-диметиламино-1,3-пропандиамин; в трехгорлую колбу добавляют метиленхлорид, N1-бензил-N3,N3-диметиламино-1,3-пропандиамин и водный раствор NaOH; медленно добавляют по каплям акрилоилхлорид; температуру повышают до комнатной температуры; реакцию проводят 2–12 ч; получают N-бензил-N-(3-(диметиламино)пропил)акриламид; используя ацетон в качестве растворителя, N-бензил-N-(3-(диметиламино)пропил)акриламид и бромалкан нагревают с обратным холодильником при 50–60°С в течение 36 ч и получают катионный мономер; в дистиллированную воду добавляют акриламид, катионный загуститель и инициатор, помещают в устройство для фотоинициации и проводят реакцию 3–5 ч с получением загустителя на основе катионного полимера. Термостойкая жидкость для гидроразрыва пласта, получаемая с использованием указанного выше загустителя. Технический результат - повышение стабильности, термостойкости, солеустойчивости при использовании при гидроразрыве на нефтяных и газовых месторождениях. 3 н. и 1 з.п. ф-лы, 2 пр., 6 ил. Подробнее
Дата
2019-09-30
Патентообладатели
Саусвест Петролиэм Юниверсити
Авторы
ЛИ, Юнмин , ЖЭНЬ, Цян , ЛИ, Синьюн
Способ эксплуатации пары скважин, добывающих высоковязкую нефть / RU 02713277 C1 20200204/
Открыть
Описание
Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежи высоковязкой и битумной нефти. Техническим результатом является повышение дебита добывающей скважины, обеспечение стабильности работы пары скважин с постоянным расходом закачки пара через нагнетательную скважину и отбором жидкости через добывающую скважину. Способ включает строительство на участке горизонтальных нагнетательной скважины и добывающей скважины, расположенной ниже и параллельно нагнетательной скважине, спуск в нагнетательную скважину двух колонн насосно-компрессорных труб, размещение в добывающей скважине оптоволоконного кабеля и насосно-компрессорной трубы с насосом и датчиками температуры на входе в электродвигатель насоса и в насосе, регулируемую закачку пара в нагнетательную скважину через колонны насосно-компрессорных труб, проведение в добывающей скважине термобарических измерений и посредством оптоволоконного кабеля выявление зоны горизонтального ствола добывающей скважины с различной температурой, изменением подачи пара через нагнетательную скважину и работой насоса установление режима работы пары скважин, при котором насос работает в постоянном режиме при температуре жидкости на входе, равной максимально допустимой по условиям работы. До строительства горизонтальных скважин участок разбуривают сеткой оценочных вертикальных скважин с отбором кернов продуктивных горизонтов, проводят комплексные геофизические исследования скважин, по результатам обобщения полученных материалов и лабораторных исследований керна получают предварительные геометрические и геолого-физические параметры залежи сверхвязкой нефти, уточняют контуры нефтеносности, определяют место размещения пары горизонтальных добывающей и нагнетательной скважин и начальный объем извлекаемых запасов нефти, приходящихся на пару скважин, после установления режима работы пары скважин эксплуатируют пары скважин в течение 2-8 лет, при этом еженедельно определяют объем накопленной добычи нефти и объем остаточных извлекаемых запасов нефти, при объеме остаточных извлекаемых запасов нефти от 25 до 75 % от начального объема извлекаемых запасов нефти, приходящихся на пару скважин, на кусте выделяют соседнюю горизонтальную добывающую скважину с обводненностью более 97 %, в затрубную линию горизонтальной добывающей скважины собирают трубопровод от устья соседней на кусте добывающей скважины, постепенно увеличивают отбор пластовой воды из соседней добывающей скважины с последующим изменением режима работы горизонтальной добывающей скважины, при этом давление закачки пластовой воды из соседней добывающей скважины в затрубное пространстве на устье добывающей скважины не должно превышать предельного давления сохранения целостности покрышки продуктивного пласта, регулировкой режима закачки воды в добывающую скважину исключают процесс парообразования и срывы подачи на приеме насоса, после чего постепенно повышают режим отбора пластовой воды через добывающую скважину для увеличения дебита по нефти. 1 ил. Подробнее
Дата
2019-09-30
Патентообладатели
Публичное акционерное общество "Татнефть" имени В.Д. Шашина
Авторы
Амерханов Марат Инкилапович , Ахметзянов Фаниль Муктасимович , Ахметшин Наиль Мунирович
Способ определения белков с помощью гигантского комбинационного рассеяния с использованием криозолей плазмонных наночастиц / RU 02717160 C1 20200318/
Открыть
Описание
Изобретение относится к области определения биомолекул с помощью эффекта гигантского комбинационного рассеяния (ГКР) и может быть использовано в медицинской диагностике для определения белков-маркеров различных патологий, в том числе с использованием технологии «лаборатория на чипе». Способ определения белков включает приготовление твердофазного ГКР-субстрата, представляющего собой каплю смеси золя плазмонных наночастиц с раствором содержащего белок анализируемого образца, замороженную на подложке из теплопроводного не имеющего собственного КР-спектра материала; воздействие на полученный субстрат лучом лазера при охлаждении ГКР-субстрата до температуры, обеспечивающей существование субстрата в твердом состоянии, запись ГКР-спектра и его матобработку. Технический результат состоит в повышении интенсивности и увеличении соотношения сигнал/шум получаемых спектров, в т.ч. в присутствии примесей, и в повышении стабильности получаемых результатов анализа во времени. 8 з.п. ф-лы, 7 ил. Подробнее
Дата
2019-09-19
Патентообладатели
Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Авторы
Курочкин Илья Николаевич , Еременко Аркадий Вениаминович , Дурманов Николай Николаевич , Моргунов Валерий Васильевич , Рыкова Валентина Александровна , Евтушенко Евгений Геннадьевич , Агафонов Павел Владимирович , Ковалев Александр Васильевич
Способ приготовления адсорбента для очистки газа и жидкости / RU 02709689 C1 20191219/
Открыть
Описание
Предлагаемое изобретение относится к газоперерабатывающей и газохимической промышленности, в частности к производству адсорбентов для очистки природных и попутных газов от нежелательных примесей, таких как хлористый водород, хлор, сероводород и меркаптаны. Может быть использовано в нефтехимической, нефтеперерабатывающей, на предприятиях цветной металлургии, химической промышленности и для охраны окружающей среды. Активность предлагаемого адсорбента по связыванию кислых газов, таких как хлористый водород, хлор, сероводород, обусловлен наличием в составе гранул оксида цинка. При адсорбции происходит химическое связывание хлористого водорода, хлора, сероводорода с образованием хлорида цинка или сульфида цинка. Поэтому необходимо обеспечить доступность активного компонента в грануле. Мелкодисперсный моногидрат оксида алюминия псевдобемитной модификации после прокалки при температурах 400-500°С переходит в оксид алюминия, который инертен к кислым газам и обеспечивает прочность и стабильность гранул. Введение в состав шихты модифицированного крахмала обеспечивает дополнительную пластичность при формовке. А также после прокалки выгорает и дает дополнительную доступность оксида цинка в порах гранул. Задача настоящего изобретения заключается в получении гранулированного адсорбента с высокой прочностью и адсорбционной емкостью по кислым газам. 1 табл. Подробнее
Дата
2019-09-11
Патентообладатели
Рахматуллин Эльвир Маратович , Бодрый Александр Борисович , Тагиров Айдар Шамилевич , Усманов Ильшат Фаритович
Авторы
Рахматуллин Эльвир Маратович , Бодрый Александр Борисович , Тагиров Айдар Шамилевич , Усманов Ильшат Фаритович
Катализатор, способ его приготовления и способ переработки тяжелого углеводородного сырья / RU 02717095 C1 20200318/
Открыть
Описание
Изобретение относится к составу катализатора, способу его приготовления и процессу переработки тяжелого углеводородного сырья в его присутствии с целью получения нефтепродуктов с высокой добавочной стоимостью. Описан катализатор переработки тяжелого углеводородного сырья, полученный сульфидированием состава, содержащего активный компонент и носитель, отличающийся тем, что активный компонент состоит из гетерополисоединения, содержащего как минимум один из следующих соединений ряда [Co2Mo10O38H4]6-, Co3[PMo12O40]2, Ni3[PMo12O40]2, [Co(OH)6Mo6O18]3-, [Ni(OH)6Mo6O18]2-, [Ni2Mo10O38H4]6-, [Co(OH)6W6O18]3-, [PMonW12-nO40]3- (где n = 1-11), [PVnMo12-nO40](3+n)- (где n = 1-4), Mo12O30(OH)10H2[Co(H2O)3]4 или их смесь и органическую добавку, такую как лимонная кислота, гликоль или ЭДТА, при этом носитель представляет собой оксид алюминия, оксид кремния, оксид магния, цеолит, алюмосиликат, пористый алюмофосфат, пористый силикоалюмофосфат и их сочетание, обладающий регулярной пространственной структурой макропор, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, с удельной поверхностью не менее 40 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г, при этом содержание в прокаленном при 550°C катализаторе кобальта – не более 20 мас.%, никеля – не более 20 мас.%, молибдена – не более 20 мас.%, вольфрама – не более 20 мас.%, содержание органической добавки составляет 5-15 мас.% от веса катализатора. Способ переработки тяжелого углеводородного сырья на описанном катализаторе заключается в пропускании сырья через неподвижный слой катализатора при температуре 300-550°С, скорости подачи сырья через катализатор 0,1-2 г-сырья/г-катализатора/ч, в присутствии водорода, подаваемого под давлением 7-15 МПа. Технический результат заключается в достижении высокой активности (большой конверсии в реакциях удаления серы, металлов, асфальтенов, тяжелых углеводородов, уменьшении плотности и вязкости и др.) и стабильности (увеличенного срока эксплуатации) катализатора в жестких условиях переработки тяжелых углеводородов. 3 н. и 3 з.п. ф-лы, 11 пр., 1 табл. Подробнее
Дата
2019-09-11
Патентообладатели
"Федеральное государственное бюджетное учреждение науки ""Федеральный исследовательский центр ""Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук"" "
Авторы
Пархомчук Екатерина Васильевна , Лысиков Антон Игоревич , Полухин Александр Валерьевич , Федотов Константин Владимирович , Клейменов Андрей Владимирович , Шаманаева Ирина Алексеевна , Санькова Наталья Николаевна , Воробьева Екатерина Евгеньевна
СПОСОБ СИНТЕЗА МЕТАСТАБИЛЬНЫХ СОЕДИНЕНИЙ (IN,GA)N В НИТЕВИДНЫХ НАНОКРИСТАЛЛАХ / RU 02723029 C1 20200608/
Открыть
Описание
Изобретение относится к области материаловедения полупроводников и может быть использовано для получения однородных по составу сегментов нитевидных нанокристаллов InxGa1-xN. Способ формирования нитевидных нанокристаллов InxGa1-xN, где х=0,2-0,8, устойчивых в области метастабильных составов, осуществляют с помощью металхлоридной эпитаксии из газовой фазы при атмосферном давлении в реакторе с использованием газовых прекурсоров GaCl и InCl3, при выполнении которого поддерживают температуру в реакторе 660°С с допустимым отклонением ± до 10°С и осуществляют контроль за содержанием In в твердой фазе внутри нитевидных нанокристаллов за счет изменения соотношения потоков газовых прекурсоров элементов III группы GaCl и InCl3,, и поддержания соотношения потока прекурсора V группы NH3 к суммарному потоку упомянутых прекурсоров III группы в пределах 26. Техническим результатом является повышение стабильности нанокристаллической структуры при увеличении в структуре доли индия. 3 ил., 1 табл. Подробнее
Дата
2019-09-04
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования "" Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики"" "
Авторы
Сибирёв Николай Владимирович , Бердников Юрий Сергеевич , Дубровский Владимир Германович
Способ стабилизации резисторов / RU 02722213 C1 20200528/
Открыть
Описание
Изобретение относится к технологии изготовления резисторов, в частности к стабилизации резисторов, и может быть использовано при производстве металлопленочных тензорезисторных датчиков давления, силы, деформации и гибридных интегральных схем в радиотехнической и приборостроительной промышленности. Стабилизацию резисторов проводят «пакетами» импульсов напряжения определенной амплитуды, длительности, скважности и энергии в три этапа, при этом энергию импульса напряжения на первом этапе стабилизации задают из условия предупреждения выгорания резисторов, на втором этапе - из условия достаточности температуры для структурирования тонкой резистивной пленки, на третьем этапе - из условия обеспечения ускоренной взаимодиффузии резистивной пленки и пленки диэлектрика, при этом длительность импульса и его амплитуда на первом и втором этапах стабилизации задают из условия обеспечения достаточной температуры для структурирования тонкой резистивной пленки, а на третьем этапе стабилизации - из условия обеспечения достаточной температуры для окисления верхнего слоя резистивной пленки и ускоренной взаимодиффузии резистивной пленки и пленки диэлектрика. Техническим результатом является повышение стабильности параметров резисторов при хранении и эксплуатации. 3 з.п. ф-лы. Подробнее
Дата
2019-08-27
Патентообладатели
"Акционерное общество ""Научно-исследовательский институт физических измерений"" "
Авторы
Степанов Сергей Владимирович , Уткин Кирилл Эдуардович , Колосов Павел Александрович , Торгашин Сергей Иванович
Пластичная защитная смазка / RU 02720004 C1 20200423/
Открыть
Описание
Изобретение относится к пластичным защитным и антифрикционным смазкам и может быть использовано в узлах трения машин и механизмов, работающих в условиях агрессивных сред и нормальных и высоких температур, для защиты от коррозии и механического износа изделий из черных и цветных металлов, а также для консервации оборудования и комплектующих частей оборудования в сталелитейной, горнодобывающей, судостроительной, машиностроительной и других отраслях промышленности. Пластичная защитная смазка включает смешанный загуститель, присадки - противозадирную, противоизносную, антикоррозионную и антиокислительную, комплекс кислот, при следующем содержании исходных компонентов, мас. %: сверхщелочной сульфонат кальция 35-50; алкилбензосульфокислота 4-8; мел 1-3; кислота стеариновая 1-3; кислота борная 1-3; кислота лимонная 0,5-1,5; гидроксид кальция 1-3; спирт изопропиловый 1-3; дифениламин технический 0,5-1,5; присадка противозадирная серосодержащая 1-2; присадка, содержащая дитиофосфат цинка, 1-2; масло базовое минеральное до 100%; дифениламин технический использован в качестве антиокислительной присадки, обеспечивающей повышение антиокислительной стабильности смазки; смешанный загуститель получают в процессе производства смазки на основе сверхщелочного сульфоната кальция и комплексного кальциевого мыла стеариновой, лимонной и борной кислот. При использовании заявленной смазки достигается улучшение защитных и антифрикционных свойств. Смазка может применяться при высоких нагрузках и повышенной влажности. 2 з.п. ф-лы, 1 табл. Подробнее
Дата
2019-08-12
Патентообладатели
"Общество с ограниченной ответственностью ""Завод смазочных материалов ""Девон"" "
Авторы
Шлиссер Сергей Валерьевич , Евстигнеев Максим Николаевич
Способ получения электродов на основе TiS3 для электрохимических накопителей энергии с неорганическим водным Mg-ионным электролитом / RU 02713401 C1 20200205/
Открыть
Описание
Изобретение относится к области электротехники, а именно к способу получения электродного материала для использования в составе Mg-ионных батарей, удовлетворяющих экологическим требованиям, что является актуальной проблемой энерготехники. Для получения электрода в качестве исходных реагентов используют кристаллическую элементарную серу, титановый порошок (150-300 мкм, 80 mesh) или измельченные кусочки листового титана, которые обжигают в запаянной ампуле из пирекса в течение 12 ч при 400°С с изотермической выдержкой, после чего на основе полученного порошкообразного продукта изготавливают пасту, которая содержит 75% полученного порошкообразного продукта, 5% фторопласта и 20% сажи, которые смешивают и перетирают в ступке в течение 15-20 минут, затем пересыпают в пробирку Eppendorf и добавляют растворитель, количество которого выбирают в зависимости от массы сухого вещества и желаемой консистенции раствора, затем раствор перемешивают и наносят на стальную сетку, которую высушивают в вакуумной печи в течение 2 ч при 60°С. Полученный в процессе твердофазного синтеза электродный материал обладает высокой Mg2+-ионной и электронной электропроводностью при комнатной температуре, а также обладает высокой удельной емкостью (709,3 Ф/г), скоростью заряда/разряда и стабильностью. Повышение однородности композиционного электродного материала, обладающего низким сопротивлением, является техническим результатом изобретения. 3 з.п. ф-лы, 4 ил., 3 табл. Подробнее
Дата
2019-08-09
Патентообладатели
Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук Российской Федерации
Авторы
Арсентьев Максим Юрьевич , Калинина Марина Владимировна , Губанова Надежда Николаевна
Пьезоэлектрический керамический материал на основе метаниобата лития / RU 02712083 C1 20200124/
Открыть
Описание
Изобретение относится к пьезотехнике и может быть использовано для создания высокочастотных пьезопреобразователей, работающих в широком интервале температур 20-800°С и механических нагрузок до 150 МПа. Материал имеет состав, масс. % LiNbO3 95.9-96.5, CaO 0.02-0.04, Li2O 0.67-0.87, B2O3 0.88-1.18, SiO2 1.34-1.72, TiO2 0.39-0.49. Технический результат - повышение стабильности пьезомодуля d33 в интервале давлений до 150 МПа, снижение tgδ, повышение механической прочности. 3 табл. Подробнее
Дата
2019-07-24
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Южный федеральный университет"" "
Авторы
Резниченко Лариса Андреевна , Дудкина Светлана Ивановна , Разумовская Ольга Николаевна , Андрюшин Константин Петрович , Андрюшина Инна Николаевна , Вербенко Илья Александрович