Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
УСТРОЙСТВО ЗАГРУЗКИ ЖИДКОГО ЯДЕРНОГО ТОПЛИВА В ЯДЕРНЫЙ ГОМОГЕННЫЙ РЕАКТОР / RU 02723473 C1 20200611/
Открыть
Описание
Изобретение относится к дополнительному оборудованию ядерного гомогенного реактора растворного типа, предназначенного, например, для получения медицинских изотопов. Для достижения этого технического результата предложено устройство загрузки жидкого ядерного топлива, представляющее собой систему емкостей и трубопроводов, оснащенных запорной арматурой, размещенных на единой мобильной раме. В состав предлагаемого устройства входит емкость-дозатор объемом не более 3000 см3 с уровнемером на весоизмерительном устройстве (тензометрическом датчике) с точностью не хуже 1%, воздушный фильтр, мановакуумметр и трубопроводы с запорной арматурой для слива топлива в корпус реактора и удаления газов в систему откачки и локализации этих газов. В нижней части устройство имеет поддон и опоры, а по периметру защитный кожух. Все элементы, контактирующие с жидким топливом, выполнены из стали 12Х18Н10Т. Техническим результатом является возможность дозированной ядерно-безопасной, дистанционной подачи жидкого ядерного топлива в корпус активной зоны ядерного гомогенного реактора растворного типа. 2 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-12-04
Патентообладатели
"Федеральное государственное бюджетное учреждение ""Национальный исследовательский центр ""Курчатовский институт"" "
Авторы
Бойкова Татьяна Владимировна , Сенявин Александр Борисович , Павшук Владимир Александрович , Писарев Александр Николаевич
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРСОДЕРЖАЩЕЙ КОМПОЗИЦИИ СИЛИБИНА / RU 02716706 C1 20200316/
Открыть
Описание
Настоящее изобретение относится к способу получения полимерсодержащей композиции силибина. Данный способ включает стадии: приготовления раствора силибина и сополимера молочной и гликолевой кислот (50:50) в смеси этилацетат-дихлорметан (неводная фаза); смешивания указанного раствора с раствором поливинилового спирта (водная фаза); обработки полученной смеси ультразвуком с образованием эмульсии; добавления к эмульсии раствора хлорида натрия; удаления органических растворителей из эмульсии путем упаривания в вакууме с образованием суспензии; фильтрования суспензии; ее замораживания и последующей лиофилизацией. Состав получаемого лиофилизата (% масс.): силибин 4-6, сополимер молочной и гликолевой кислот 50-52, поливиниловый спирт 22-24, хлорид натрия 20-22. При смешивании с водой лиофилизат образует суспензию частиц со средним размером 170-400 нм. Технический результат - способ получения продукта с высокой эффективностью включения силибина (более 90%), без существенных потерь активного компонента, пригодного для перорального применения при фармакологической коррекции функции печени на фоне токсических поражений. 1 з.п. ф-лы, 3 ил., 2 табл., 2 пр. Подробнее
Дата
2019-12-04
Патентообладатели
"Федеральное государственное бюджетное учреждение ""Национальный исследовательский центр ""Курчатовский институт"" "
Авторы
Гукасова Надежда Вадимовна , Кузнецов Сергей Леонидович , Тубашева Ирина Анатольевна , Заварзина Василиса Витальевна , Алешин Сергей Валерьевич , Муравьева Анна Ивановна , Панова Дарья Сергеевна , Полтавец Юрий Игоревич
Способ получения уксусной кислоты и метилэтилкетона / RU 02715698 C1 20200303/
Открыть
Описание
Изобретение относится к способу получения уксусной кислоты и метилэтилкетона в процессе реакционно-ректификационного разделения смесей сложного состава, полученных в результате жидкофазного окисления фракции н-бутана и содержащих кислоты С1-С4, спирты С1-С4, сложные эфиры С2-С6, карбонильные соединения С1-С4 и воду. Предложен способ, характеризующийся тем, что для удаления муравьиной кислоты в ректификационный аппарат в качестве реагента добавляют метанол, или смесь метанола с метилацетатом, образующийся метилформиат удаляют как компонент фракции с температурой кипения 31÷53°C, в результате ректификации выделяют фракции, содержащие в качестве основных компонентов метилформиат, метилацетат с ацетоном, этилацетат с метилэтилкетоном, метилэтилкетон с водой, втор-бутилацетат с н-бутилацетатом, воду с уксусной кислотой, уксусную кислоту, водосодержащие фракции могут быть осушены путем повторной азеотропной ректификации с добавлением любой подходящей разделяющей добавки - антренёра. Предложен новый эффективный способ, позволяющий упростить получение уксусной кислоты практически свободной от примеси муравьиной кислоты. 4 з.п. ф-лы, 6 пр., 3 табл. Подробнее
Дата
2019-11-28
Патентообладатели
"Акционерное общество ""Газпромнефть - Московский НПЗ"" "
Авторы
Иванов Дмитрий Петрович , Староконь Евгений Владимирович , Харитонов Александр Сергеевич , Носков Александр Степанович , Амосова Татьяна Викторовна , Парфенов Михаил Владимирович
Состав для удаления отложений сложной минерально-органической природы, образующихся в скважине при добыче углеводородных или минеральных природных ресурсов / RU 02723426 C1 20200611/
Открыть
Описание
Изобретение относится, преимущественно, к добывающей промышленности и может быть использовано для удаления сложных отложений минерально-органической природы. Технический результат - повышение степени удаления сложных отложений, включающих как минеральную, так и органическую составляющую, при одновременном повышении у композиции удельной емкости растворения - удаления. Состав содержит композицию, имеющую водородный показатель 10-12, при этом композиция включает комплексон - полиаминополикарбоновую кислоту или ее соль, добавку и воду, в качестве полиаминополикарбоновой кислоты или ее соли композиция содержит два разных реагента 1 и 2, каждый из которых выбран из группы: диэтилтриаминпентаацетат калия; динатриевая соль-N,N-диацетата глутаминовой кислоты; N,N-диацетат глутаминовой кислоты; этилендиаминтетрауксусная кислота; в качестве добавки композиция содержит поверхностно-активное вещество (ПАВ) алкилдиметиламиноксид С12-С14, при следующем соотношении компонентов, мас. %: реагент 1 (в пересчете на сухое вещество) 5-36; реагент 2 (в пересчете на сухое вещество) 5-36; указанное ПАВ (в пересчете на сухое вещество) 0,1-0,15; вода остальное. 1 табл., 1 пр. Подробнее
Дата
2019-11-12
Патентообладатели
"АКЦИОНЕРНОЕ ОБЩЕСТВО ""ПОЛИЭКС"" "
Авторы
Шипилов Анатолий Иванович , Елсуков Антон Витальевич
Способ аддитивного формования изделий из порошковых материалов / RU 02717768 C1 20200325/
Открыть
Описание
Изобретение относится к аддитивному формованию изделий из порошковых материалов. Способ включает экструзионную подачу смеси, содержащей порошок металлов или керамики и полимерное связующее, в зону построения изделия с одновременным локальным тепловым разогревом смеси и последующую термообработку сформированного изделия для удаления связующего. В качестве порошка металлов или керамики используют порошок, имеющий полидисперсный гетерофазный состав с дисперсностью 0,1-20 мкм. В качестве полимерного связующего используют связующее, имеющее проводимость, равную 0,01-0,03 Ом−1·м−1. Локальный тепловой разогрев смеси осуществляют посредством пропускания через нее импульсов электрического тока с амплитудой 100-1000 В и длительностью 0,005-0,01 сек. Обеспечивается аддитивное формование изделий из порошковых материалов без явно выраженных анизотропных свойств. 3 пр. Подробнее
Дата
2019-10-15
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский Томский государственный университет"" "
Авторы
Кульков Сергей Николаевич , Буяков Алесь Сергеевич
Состав и способ приготовления катализатора гидрирования диолефинов / RU 02714138 C1 20200212/
Открыть
Описание
Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций, а именно, к катализаторам защитного слоя для гидрирования диолефинов и к способам их приготовления. Предлагается катализатор гидрирования диолефинов для использования в составе защитного слоя в процессе гидрооблагораживания нефтяных дистиллятов, состоящий из модифицированного носителя, приготовленного на основе высокопористого ячеистого материала с ячеистостью 10-30 меш и привитого слоя гамма-оксида алюминия, а также нанесенных на носитель биметаллических комплексных соединений металлов VIII и VI групп. Катализатор отличается тем, что высокопористый ячеистый материал имеет открытую пористость не менее 50%, в качестве биметаллических комплексных соединений металлов VIII и VI групп катализатор включает соединения никеля или кобальта и молибдена, а содержание компонентов в прокаленном при температуре 550°С катализаторе составляет, мас.%: высокопористый ячеистый материал - 73,0-88,1; γ-Al2O3 в виде привитого слоя - 8,0-22,2; оксид никеля и/или кобальта - не менее 0,5; оксид молибдена - не менее 2,0, причем катализатор в активированном состоянии имеет удельную поверхность 12-25 м2/г, эффективный диаметр пор 3,0-6,7 нм, механическую прочность на сжатие - не менее 200Н. Технический результат - разработанный катализатор гидрирования диолефинов, обладающий функциями адсорбции и катализа, обеспечивает в условиях гидрогенизационного облагораживания нефтяных фракций глубину удаления диолефинов 90% и более, что позволяет уменьшить содержание кокса на катализаторе, снизить перепад давления по реактору и тем самым увеличить срок службы основного катализатора гидрооблагораживания до регенерации до не менее трех лет, а способ приготовления данного катализатора позволяет, при расширении сырьевой базы, обеспечить получение катализатора с оптимальными для гидрирования диолефинов характеристиками. 2 н. и 4 з.п. ф-лы, 3 табл. Подробнее
Дата
2019-10-03
Патентообладатели
"Публичное акционерное общество ""Нефтяная компания ""Роснефть"" "
Авторы
Никульшин Павел Анатольевич , Алексеенко Людмила Николаевна , Гаврилова Елена Андреевна , Гусева Алёна Игоревна , Болдушевский Роман Эдуардович , Филатов Роман Владимирович
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО МЕТАЛЛИЧЕСКОГО ЖЕЛЕЗА / RU 02717758 C1 20200325/
Открыть
Описание
Изобретение относится к технологии получения гранулированного металлического железа в печи с вращающимся подом. Способ включает приготовление шихты из железосодержащего сырья, углеродсодержащего восстановителя, кальцийсодержащего минерального наполнителя и добавки, выполняющей роли вещества, ускоряющего когезию побочного шлакового продукта и облегчающего коалесценцию образующегося металла, их дозированное смешение, брикетирование в брикет-прессе, удаление из полученных брикетов излишков влаги путем обработки в сушильном агрегате и их дальнейшую высокотемпературную обработку в печи с вращающимся подом с последующим охлаждением и разделением на металл и шлак. В состав шихты входят 64-71 вес. % железосодержащего сырья, 13,6-19,4 вес. % углеродсодержащего восстановителя, 2,4-3,2 вес. % кальцийсодержащего минерального наполнителя и 7,7-8,5 вес. % комплексного связующего, остальное - вода. В качестве добавки, выполняющей роли вещества, ускоряющего когезию побочного шлакового продукта и облегчающего коалесценцию образующегося металла, используется промышленное натриевое жидкое стекло. 6 з.п. ф-лы, 3 табл., 5 пр. Подробнее
Дата
2019-09-23
Патентообладатели
Вершаль Владимир Владимирович , Гилев Виталий Александрович , Мищенко Артем Николаевич , Сумкин Александр Владимирович , Логунов Вадим Дмитриевич , Анисимов Александр Геннадьевич
Авторы
Вершаль Владимир Владимирович , Гилев Виталий Александрович , Мищенко Артем Николаевич , Сумкин Александр Владимирович , Логунов Вадим Дмитриевич , Анисимов Александр Геннадьевич
Катализатор, способ его приготовления и способ переработки тяжелого углеводородного сырья / RU 02717095 C1 20200318/
Открыть
Описание
Изобретение относится к составу катализатора, способу его приготовления и процессу переработки тяжелого углеводородного сырья в его присутствии с целью получения нефтепродуктов с высокой добавочной стоимостью. Описан катализатор переработки тяжелого углеводородного сырья, полученный сульфидированием состава, содержащего активный компонент и носитель, отличающийся тем, что активный компонент состоит из гетерополисоединения, содержащего как минимум один из следующих соединений ряда [Co2Mo10O38H4]6-, Co3[PMo12O40]2, Ni3[PMo12O40]2, [Co(OH)6Mo6O18]3-, [Ni(OH)6Mo6O18]2-, [Ni2Mo10O38H4]6-, [Co(OH)6W6O18]3-, [PMonW12-nO40]3- (где n = 1-11), [PVnMo12-nO40](3+n)- (где n = 1-4), Mo12O30(OH)10H2[Co(H2O)3]4 или их смесь и органическую добавку, такую как лимонная кислота, гликоль или ЭДТА, при этом носитель представляет собой оксид алюминия, оксид кремния, оксид магния, цеолит, алюмосиликат, пористый алюмофосфат, пористый силикоалюмофосфат и их сочетание, обладающий регулярной пространственной структурой макропор, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, с удельной поверхностью не менее 40 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г, при этом содержание в прокаленном при 550°C катализаторе кобальта – не более 20 мас.%, никеля – не более 20 мас.%, молибдена – не более 20 мас.%, вольфрама – не более 20 мас.%, содержание органической добавки составляет 5-15 мас.% от веса катализатора. Способ переработки тяжелого углеводородного сырья на описанном катализаторе заключается в пропускании сырья через неподвижный слой катализатора при температуре 300-550°С, скорости подачи сырья через катализатор 0,1-2 г-сырья/г-катализатора/ч, в присутствии водорода, подаваемого под давлением 7-15 МПа. Технический результат заключается в достижении высокой активности (большой конверсии в реакциях удаления серы, металлов, асфальтенов, тяжелых углеводородов, уменьшении плотности и вязкости и др.) и стабильности (увеличенного срока эксплуатации) катализатора в жестких условиях переработки тяжелых углеводородов. 3 н. и 3 з.п. ф-лы, 11 пр., 1 табл. Подробнее
Дата
2019-09-11
Патентообладатели
"Федеральное государственное бюджетное учреждение науки ""Федеральный исследовательский центр ""Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук"" "
Авторы
Пархомчук Екатерина Васильевна , Лысиков Антон Игоревич , Полухин Александр Валерьевич , Федотов Константин Владимирович , Клейменов Андрей Владимирович , Шаманаева Ирина Алексеевна , Санькова Наталья Николаевна , Воробьева Екатерина Евгеньевна
СПОСОБ ГРАНУЛИРОВАНИЯ И ЗАМОРАЖИВАНИЯ МИКРОБНОЙ БИОМАССЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ / RU 02721577 C1 20200520/
Открыть
Описание
Группа изобретений относится к области биотехнологии. Предложено устройство и способ гранулирования и замораживания микробной биомассы. Устройство включает емкость для размещения микробной биомассы, каплегенератор, сборник гранул и обеспечивающий возможность заполнения его внутреннего объема жидким азотом и парами жидкого азота криогенный гранулятор. Емкость для размещения микробной биомассы содержит пропеллерную мешалку, при этом емкость соединена циркуляционным трубопроводом с криогенным гранулятором, а расположенная в криогенном грануляторе часть циркуляционного трубопровода содержит в нижней стенке отверстия и представляет собой каплегенератор. Криогенный гранулятор содержит барботер, лопастную мешалку и средство для выгрузки гранул. Способ включает подачу микробной биомассы в емкость, циркуляцию микробной биомассы по трубопроводу, образование в каплегенераторе капли, формирование гранул с замерзанием поверхностного слоя капель при их падении в парах жидкого азота, непрерывное перемешивание жидкого азота с замерзающими в нем гранулами и удаление гранул. Изобретения обеспечивают повышение выхода количества годных гранул, имеющих одинаковую форму, один и тот же качественный и количественный состав. 2 н. и 6 з.п. ф-лы, 1 ил. Подробнее
Дата
2019-09-09
Патентообладатели
"Общество с ограниченной ответственностью ""Зеленые линии"" "
Авторы
Черников Денис Львович , Озеров Вадим Георгиевич , Николаев Валерий Владимирович
Пиротехнический состав красного огня / RU 02722031 C1 20200526/
Открыть
Описание
Изобретение относится к пиротехнике, в частности к пиротехническим составам на основе нитратов металлов, которые предназначены для образования цветного огня при горении от химического взаимодействия нескольких твердых веществ, и предназначено для формирования основного сигнального красного огня, установленного для военных, спасателей, туристов, охотников и проч. Пиротехнический состав красного огня содержит стронций азотнокислый, порошок металлического горючего, усилитель цвета - хлорпарафин ХП-66Т и органическое горючее связующее - раствор идитола, причем в качестве металлического горючего используется порошок алюминиево-магниевого сплава, окислитель дополнен калием хлорнокислым и стронцием углекислым, органическое горючее связующее выполнено в форме 50%-ного раствора фенолоформальдегидной смолы СФ-342 в этиловом спирте и дополнительно введен стеарат кальция. Предложенное техническое решение обеспечило улучшение технологичности приготовления состава смешиванием и формования из него зарядов, которые горят ярким пламенем красного насыщенного цвета, хорошо видимого и различимого на удалении. 1 табл., 5 пр. Подробнее
Дата
2019-08-29
Патентообладатели
"Акционерное общество ""Федеральный научно-производственный центр ""Научно-исследовательский институт прикладной химии"" "
Авторы
Варёных Николай Михайлович , Вагонов Сергей Николаевич , Букин Никита Геннадиевич , Подсобляева Надежда Григорьевна , Киселев Дмитрий Александрович
Способ обогащения водного продуктивного раствора в период демисезонья и самонастраивающаяся система автоматического регулирования для реализации способа / RU 02722677 C1 20200603/
Открыть
Описание
Предложенная группа изобретений относится к области горного дела, к геотехнологическим способам добычи твердых полезных ископаемых, в частности, методом подземного выщелачивания (ПВ), с последующим обогащением получаемого водного продуктивного раствора и его гидрометаллургических переделом и может применяться при освоении: месторождений в сильно обводненных и неустойчивых осадочных породах; руд зон окисления сульфидных месторождений; забалансовых участков; глубокозалегающих залежей с бедной рудой; отвалов хвостохранилищ. Согласно предложенному способу подачу водного продуктивного раствора производят автоматически пропорционально падению уровня зеркала бассейна посредством вытекания ламинарного потока на границу раздела водной фракции и фракции коллективного концентрата, удаление воды из бассейна производят автоматически посредством пропитывания водой поглощающего торфяного ленточного картриджа путем протягивания его под зеркалом бассейна с последующим экстрагированием активных компонентов торфа с помощью прогрева и обработки ультразвуком и отжимом торфяной воды, которую возвращают в процесс подземного выщелачивания, а выдачу коллективного концентрата производят автоматически саморегулируя слив при достижении установленных максимального и минимального уровней коллективного концентрата в объеме жидкости бассейна. Способ осуществляется с помощью самонастраивающейся системы, содержащей открытый бассейн на дневной поверхности земли, заполненный водным продуктивным раствором, трубопровод подачи водного продуктивного раствора, снабженный запорной арматурной и трубопровод выдачи коллективного концентрата полезных компонентов руды, снабженный запорной арматурой, отличающийся тем, что трубопровод подачи водного продуктивного раствора оснащен запорно-регулирующей арматурой, сервоприводом, датчиком уровня зеркала бассейна и соединен гибким шлангом с ламинарной равновесной платформой стока. Трубопровод выдачи коллективного концентрата оснащен запорно-регулирующей арматурой, сервопроводом, концевыми включателями верхнего максимального уровня, концевыми выключателями нижнего минимального уровня. В состав системы входит торфяной ленточный картридж, лентопротяжный механизм, ванна-экстрактор, валиковое устройство отжима торфа, датчик эффективности экстрагирования и емкость для сбора отжима торфа. Технический результат – обеспечение эффективного обогащения водного продуктивного раствора в континентальных климатических условиях демисезонья, а также обеспечение рециклинга технологической воды. 2 н. и 6 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-08-13
Патентообладатели
Лунев Петр Сергеевич , Лунев Владимир Иванович
Авторы
Лунев Петр Сергеевич , Лунев Владимир Иванович
СОСТАВ ДЛЯ УДАЛЕНИЯ ПОЛИИМИДНОГО МАТЕРИАЛА / RU 02711532 C1 20200117/
Открыть
Описание
Изобретение относится к приборостроению, в частности к составам для удаления с изделий имидизированного полиимидного лака. Состав для травления полиимидного материала содержит органический амин, состоит из диметилсульфоксида (ДМСО), диметилформамида (ДМФА). Органическим амином является полиэтиленполиамин (ПЭПА). Состав содержит компоненты в следующих соотношениях объемных долей: Диметилсульфоксид - 0,9-1,2; Диметилформамид - 0,9-1,2; Полиэтиленполиамин - 0,7-0,9. Изобретение позволяет сократить время удаления имидизированного полиимидного покрытия с поверхности изделий без механического воздействия и использования высоких температур. 1 табл. Подробнее
Дата
2019-07-04
Патентообладатели
"Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации , Акционерное общество ""Научно-производственное предприятие ""Пульсар"" "
Авторы
Савченко Евгений Матвеевич , Чупрунов Алексей Геннадьевич , Сидоров Владимир Алексеевич , Есипова Валентина Борисовна , Егупова Маргарита Александровна , Маскалец Яна Сергеевна
Система активной дегазации полигонов твердых бытовых отходов и твердых коммунальных отходов / RU 02713700 C1 20200206/
Открыть
Описание
"Изобретение относится к обезвреживанию твердых бытовых и коммунальных отходов (ТБО, ТКО) и допускаемых к размещению с ними промышленных отходов, а именно к системе сбора и отвода биогаза на полигоне ТБО и ТКО. Система активной дегазации предназначена для использования на полигонах твердых бытовых отходов и твердых коммунальных отходов. Система активной дегазации содержит вертикальные дренажные гибкие дрены, состоящие из предварительно изготовленных пластиковых сердечников, которые обернуты фильтрующим газо-водопроницаемым нетканым материалом, состоящим из термически связанных полимерных волокон. Фильтрующий материал выполнен так, что его засорение частицами почвы предотвращено, тогда как он является достаточно проницаемым для жидкости и газа, чтобы было возможно вертикальное перемещение жидкости и газа через дренажные гибкие дрены. Термин ""вертикальные"" следует понимать как означающий установку до угла по меньшей мере 45° относительно уровня поверхности. Это значит, что вертикальные дренажные дрены могут быть установлены наклонно. Вертикальные дренажные гибкие дрены оснащены пластмассовыми оголовниками, соединенными в верхней части с газоотводящими пластиковыми трубками с внутренним диаметром 15-25 мм, длиной не более 3 м. Вертикальные дренажные гибкие дрены через газоотводящие трубки, снабженные тройниками, соединены с горизонтальными трубами с внутренним диаметром 15-25 мм. Горизонтальные трубы соединены между собой так, что образуют отдельные газосборные кластеры. Каждый газосборный кластер через горизонтальные отводящие трубы подключен к закрытой системе горизонтальных труб 10, изготовленных из полимерных материалов диаметром 40-60 мм. Закрытая система горизонтальных труб соединена с конденсатосборниками, компрессором, газовым компрессором, факельной системой. Технический результат от использования всех существенных признаков изобретения заключается в повышении эффективности извлечения биогаза для стабилизации полигонов хранения твердых отходов, улучшении экологии окружающей среды, обеспечении подачи заданного состава биогаза потребителям, снижении частоты удаления конденсата, повышении качества получаемого на выходе газа. 5 з.п. ф-лы, 6 ил." Подробнее
Дата
2019-06-11
Патентообладатели
Проскуряков Владислав Николаевич
Авторы
Проскуряков Владислав Николаевич , Бенгт Тони Зеттерфельд , Тиль Питер де Зварт
Способ определения диаграммы направленности фазированной антенной решетки / RU 02709417 C1 20191217/
Открыть
Описание
Изобретение относится к области антенной техники и может быть использовано для определения характеристик фазированных антенных решеток. Способ заключается в приеме сигналов, переносимых электромагнитным полем, изменении сдвигов фаз сигналов, проходящих через один или несколько элементов фазированной антенной решетки, измерении амплитуды сигнала, формируемого вспомогательной антенной, при котором фазированная антенная решетка располагается в области, где принимаемое ею электромагнитное поле представляет собой плоскую электромагнитную волну, при этом задают набор направлений луча, охватывающий область видимости фазированной антенной решетки, а плоскость раскрыва, электрические длины от элементов которой до входа измерительной аппаратуры произвольны, располагают под углом относительно фронта плоской электромагнитной волны, изменяя с помощью фазовращателей сдвиги фаз сигналов, проходящих через элементы фазированной антенной решетки, устанавливают луч фазированной антенной решетки в одно из направлений набора, измеряют амплитуду сигнала, затем операции повторяют, каждый раз устанавливая луч фазированной антенной решетки последовательно в остальные направления, амплитуды сигнала, измеренные при каждом направлении луча, умножают на заранее определенные для этих направлений амплитуды сигнала от одного элемента в составе фазированной антенной решетки. Для достижения возможности определения диаграммы направленности фазированной антенной решетки при неподвижной установке испытуемой фазированной антенной решетки в горизонтальной или наклонных плоскостях формирование плоской электромагнитной волны осуществляется вспомогательной антенной, располагаемой на борту дистанционно пилотируемого летательного аппарата квадрокоптерного типа, который в режиме зависания вместе с вспомогательной антенной и маломощным передатчиком на борту устанавливается на расстояние R≥2D2/λ, где: R - удаление вспомогательной антенны на борту от плоскости раскрыва фазированной антенной решетки; D - наибольший размер раскрыва фазированной антенной решетки; λ - рабочая длина волны; при этом фазированная антенная решетка располагается под произвольным относительно горизонта углом. 2 ил. Подробнее
Дата
2019-06-03
Патентообладатели
"Акционерное общество ""Научно-исследовательский институт приборостроения имени В.В. Тихомирова"" "
Авторы
Макушкин Игорь Евгеньевич , Грибанов Александр Николаевич , Гаврилова Светлана Евгеньевна , Поленов Владимир Николаевич
ИЗМЕЛЬЧИТЕЛЬ / RU 02716408 C1 20200311/
Открыть
Описание
Изобретение относится к устройствам для измельчения твердых, в том числе особо прочных, материалов и может быть использовано для дробления трудно измельчаемых материалов в различных добывающих и перерабатывающих отраслях промышленности, в частности химической, металлургической, промышленности строительных материалов, при переработке минерального сырья, пищевой промышленности, а также в сельском хозяйстве. В частности, изобретение может быть использовано для измельчения шлака, образующегося в технологическом процессе утилизации гальванических шламов методом алюминотермии. Измельчитель содержит корпус с крышкой и выгрузным окном, перекрываемым сепарирующей пластиной со сквозными отверстиями, соединенный с корпусом вертикальный питающий патрубок, роторный рабочий орган в виде ножа из изогнутых пластин, при этом на внутренней поверхности стенок цилиндрического корпуса и на роторном рабочем органе закреплены дополнительные режущие элементы из твердого сплава, отбойники на верхней крышке корпуса, а также приемный бункер для готового продукта, снабженный рукавным фильтром, помещенным в патрубок с вытяжным вентилятором и герметично соединенным с упомянутым бункером, на внутренней стенке которого смонтирован магнитный улавливатель. Измельчитель оснащен устройством управления, регулирующим работу электродвигателя, для защиты последнего от короткого замыкания и перегрева. Измельчитель обеспечивает повышение эффективности измельчения, в том числе при переработке материалов высокой прочности, и качества получаемого продукта за счет улучшения однородности его состава и удаления из него магнитной фракции. 1 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-05-28
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук
Авторы
Юдаков Александр Алексеевич , Цыбульская Оксана Николаевна , Ксеник Татьяна Витальевна , Кисель Алексей Альфредович
Бисквитный полуфабрикат обогащенный и способ его приготовления / RU 02720253 C1 20200428/
Открыть
Описание
Группа изобретений относится к пищевой промышленности. Предложены бисквитный полуфабрикат обогащенный и способ его приготовления. Бисквитный полуфабрикат обогащенный изготовлен из яиц куриных, сахара-песка, овсяной муки, измельченного порошка из черноплодной рябины и какао-порошка при следующем соотношении исходных компонентов, мас.%: яйца куриные - 48,7, сахар-песок - 25,6, мука овсяная - 20,5-24,4, порошок плодов черноплодной рябины - 1,05-2,6, какао-порошок - 0,25-2,6.    В способе приготовления бисквитного полуфабриката овсяную муку и измельченный порошок черноплодной рябины просеивают через сито диаметром ячейки не более 2 мм. Отдельно взбивают желтки с 2/3 частями сахара-песка и белки с 1/3 частью сахара-песка. Взбитую белковую массу добавляют к взбитой желтковой массе и перемешивают. В полученную массу добавляют просеянную овсяную муку, измельченный порошок черноплодной рябины и какао-порошок и замешивают тесто. Осуществляют формование приготовленного теста и выпекают в предварительно разогретом до 180°С духовом шкафу в течение 30 мин. Готовый бисквитный полуфабрикат вынимают из духового шкафа и оставляют в форме для остывания на 10 мин, затем извлекают из формы и выкладывают на решетку для полного остывания и удаления излишней влаги. Группа изобретений позволяет получить продукт пониженной калорийности, с высокими органолептическими показателями и улучшенным минеральным составом, сократить продолжительность выпекания и замедлить процесс черствения. 2 н.п. ф-лы, 7 табл., 3 пр. Подробнее
Дата
2019-05-21
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Юго-Западный государственный университет"" "
Авторы
Пьяникова Эльвира Анатольевна , Ковалева Анна Евгеньевна , Быковская Екатерина Игоревна
Метод иммуноокрашивания биологического материала для конфокальной микроскопии / RU 02700410 C1 20190917/
Открыть
Описание
Изобретение относится к улучшенному методу иммуноокрашивания биологического материала для использования в конфокальной микроскопии. Метод включает подготовку материала, фиксацию, удаление фиксатора, блокирование неспецифического связывания антител, инкубацию с первичными антителами в блокирующем буфере, отмывку от первичных антител, инкубацию с вторичными антителами в блокирующем буфере, отмывку от вторичных антител, дегидратацию, просветление и визуализацию объекта, согласно изобретению. В качестве блокирующего буфера используют фосфатный буфер, содержащий 0,1-1,0% неионного детергента, 20,0% диметилсульфоксида, 1,0% бычьего сывороточного альбумина, не более 10,0% овечьей сыворотки и 0.03% азида натрия. В качестве неионных детергентов используют Tween-20 или Triton X-100. Фиксацию проводят в растворе 4% параформальдегида с метанолом на фосфатном буфере в течение 5-6 часов при +4°С; удаление фиксатора ведут отмывочным буфером 3 раза по 20 мин при комнатной температуре; блокирование неспецифического связывания антител проводят в течение 12 часов блокирующим буфером при +4°С; инкубацию с первичными антителами в блокирующем буфере ведут в течение 5-7 суток при комнатной температуре и постоянном перемешивании, последующую отмывку от первичных антител ведут в отмывочном буфере, 6 раз по 20 мин, при комнатной температуре; инкубацию с вторичными антителами в блокирующем буфере проводят в течение 2 суток при комнатной температуре и постоянном перемешивании, отмывку от вторичных антител ведут 6 раз по 20 мин при комнатной температуре в отмывочном буфере. Удаление фиксатора, отмывку от первичных и вторичных антител, как правило, ведут отмывочным буфером, содержащим фосфатный буфер с добавлением неионных детергентов, сохраняющих структуру тканей, в концентрациях от 0,1 до 1,0%. Дегидратацию осуществляют инкубацией материала в 50% метаноле в течение 10 мин, а затем переносят в 100% метанол на 20 мин, с последующим замещением раствора на 100% свежий метанол и выдерживают не менее 20 мин при постоянном перемешивании; оптическое просветление путем химического обесцвечивания проводят инкубацией материала в смеси бензилового спирта и бензилбензоата в соотношении 1:2, в течение 1 часа при комнатной температуре, с дальнейшим замещением свежим раствором бензилового спирта и бензилбензоата в соотношении 1:2 и инкубируют в нем в течение ночи при постоянном перемешивании, после чего проводят визуализацию объекта. Визуализацию объекта обычно ведут с помощью конфокальной микроскопии в комбинации режимов Z-stack и TILE-scan. Состав блокирующего буфера в предлагаемых условиях экспозиции позволяет исключить неспецифическое окрашивание по всей глубине образца, маркировать только определенные структуры, и получать их четкое изображение. Метод позволяет без труда визуализировать тканевые структуры, залегающие на глубине более 150 мкм, что является преимуществом метода, позволяющего адаптировать его для разных биологических объектов и значительно расширить круг исследуемых биологических материалов размером до 6 см3. 4 з.п. ф-лы, 5 ил., 1 табл., 5 пр. Подробнее
Дата
2019-05-20
Патентообладатели
"Федеральное государственное бюджетное учреждение науки ""Национальный научный центр морской биологии им. А.В. Жирмунского"" Дальневосточного отделения Российской академии наук "
Авторы
Дячук Вячеслав Алексеевич , Юрченко Ольга Викторовна
Способ получения тканеспецифического матрикса для тканевой инженерии хряща / RU 02716577 C1 20200312/
Открыть
Описание
Изобретение относится к медицине, а именно к области биотехнологии. Способ включает нарезание суставного хряща свиньи фрагментами размером не более 0,5 см, измельчают и выделяют частицы размером от 100 мкм до 250 мкм. Далее выполняют децеллюляризацию: не менее 3 циклов охлаждения при температуре -196°С в течение одного часа с последующим оттаиванием при 35-40°С в течение одного часа, инкубацию в трех сменах фосфатного буфера (138 мМ NaCl, 2.67 мМ KCl, 1.47 мМ KH2PO4, 8.1 мМ Na2HPO4, рН 7,4 (ФБС), рН=7.4), объемом 20-500 мл, содержащего 0,1% додецилсульфат натрия и повышающуюся концентрацию Тритона X100 (1, 2 и 3%, соответственно), инкубацию в течение 12-48 часов при температуре 37°С в 1-10 мл раствора, содержащего 30-50 Е/мл ДНКазы I типа в буферном растворе, полученном из состава 10 мМ Трис-HCl, 2,5 мМ MgCl2, 0.5 мМоль CaCl2, дистиллированная вода до 1 л с рН 7.6. Далее производят отмывку частиц хряща путем ополаскивания 100-500 мл бидистиллированной воды, экспозиции в течение суток в 20-500 мл бидистиллированной воды при комнатной температуре и периодическом перемешивании со скоростью 10-500 об/мин в течение одного часа трижды на протяжении суток, экспозиции по меньшей мере 48 часов при комнатной температуре в бидистиллированной воде, содержащей ампициллин из расчета 10-20 мкг/мл и амфотерицин из расчета 1,5-2,0 мкг/мл, ополаскивания в 20-500 мл бидистиллированной воды. После чего частицы хряща высушивают и стерилизуют γ-облучением в дозе 1,5 Мрад с получением образцов искомого матрикса. Изобретение позволяет повысить полноту удаления клеток за счет микронизации и предлагаемого оригинального комплексного воздействия физических (замораживание/оттаивание), химических (смесь ионных и не ионных ПАВ) и биологических (ДНКаза) факторов, примененных в оптимальной комбинации, облегчить рецеллюляризацию матрикса клетками за счет увеличения площади для заселения при сохранении объема и упрощении наблюдения за ней за счет увеличения площади адгезированных поверхностей матрикса путем его предварительной микронизации. 2 з.п. ф-лы, 7 ил., 1 табл., 7 пр. Подробнее
Дата
2019-05-17
Патентообладатели
"Федеральное государственное бюджетное учреждение ""Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова"" Министерства здравоохранения Российской Федерации "
Авторы
Готье Сергей Владимирович , Севастьянов Виктор Иванович , Басок Юлия Борисовна , Немец Евгений Абрамович , Кирсанова Людмила Анфилофьевна , Кириллова Александра Дмитриевна
Способ многокомпонентного диффузионного насыщения поверхности деталей из жаропрочных никелевых сплавов / RU 02699332 C1 20190905/
Открыть
Описание
Изобретение относится к способу многокомпонентного диффузионного насыщения поверхности деталей из жаропрочных никелевых сплавов и может быть использовано в энергетическом и/или авиационном двигателестроении или других отраслях народного хозяйства. Многокомпонентное диффузионное насыщение проводят в газоциркуляционной установке, содержащей реактор, состоящий из муфеля, установленной на раме крышки с вентилятором и введенного в указанную крышку вакуумного насоса, и электропечь, установленную на упомянутой раме поверх реактора. На упомянутую крышку устанавливают кассеты с деталями, кассеты с источниками диффундирующих элементов и источником исходной газовой галогенидной среды. Затем на упомянутую крышку опускают муфель и устанавливают на реактор электропечь, проводят откачку воздуха из реактора с обеспечением вакуума 10-2-5×10-2 мм рт.ст. и осуществляют нагрев электропечи. При температуре в реакторе 600-950°С выключают вакуумный насос, при температуре в реакторе 600-900°С включают вентилятор, при температуре 1000-1050°С проводят выдержку в течение 2-8 часов, при температуре 800-1050°С включают вакуумный насос для удаления остаточных продуктов химических реакций, протекающих в реакторе во время диффузионного насыщения, при температуре 500-700°С выключают вентилятор. При температуре 100-120°С снимают электропечь, затем муфель, кассеты с деталями и кассеты с источником диффундирующих элементов и источником исходной газовой галогенидной среды. В качестве источника диффундирующих элементов используют гранулы хрома, гранулы сплава хрома с алюминием, гранулы сплава никеля с иттрием, а в качестве источника исходной газовой галогенидной среды используют безводный хлорид никеля. Достигается улучшение получения стабильных по толщине и химическому составу покрытий и повышение их долговечности, а также улучшение свойств деталей по жаростойкости и термостойкости с такими покрытиями. 1 з.п. ф-лы, 12 табл., 13 ил. Подробнее
Дата
2019-04-29
Патентообладатели
"Акционерное общество ""Объединенная двигателестроительная корпорация"" "
Авторы
Минаков Александр Иванович , Зарыпов Марат Саитович , Абраимов Николай Васильевич , Финащенков Андрей Павлович , Шкретов Юрий Павлович
Способ химического удаления дефектного слоя с поверхности деталей после электроэрозионной вырезки / RU 02714574 C1 20200218/
Открыть
Описание
Изобретение относится к химическим способам удаления дефектного слоя с поверхности деталей после электроэрозионной вырезки и может быть использовано в областях техники, связанных с операцией очистки деталей, изготовленных из легированных сталей, легированных инструментальных сталей, прецизионных сплавов, а также спеченных сплавов. Способ включает обработку деталей после электроэрозионной вырезки в растворе при температуре 18-30°C до полного удаления дефектного слоя, при этом используют раствор, имеющий следующий состав, мас.%: лимонная кислота 5,0-7,0, винная кислота 5,0-7,0, динатриевая соль этилендиамин-N,N,N',N'-тетрауксусной кислоты 0,5-0,7, поверхностно-активное вещество ОП-7 0,25-0,7, вода дистиллированная – остальное. Для повышения эффективности обработку проводят с наложением ультразвуковых колебаний. Способ обеспечивает удаление дефектного слоя с поверхности после электроэрозионной вырезки непосредственно в механических цехах на участке мойки деталей, при этом позволяет повысить экологичность производства. 1 з.п. ф-лы, 1 пр. Подробнее
Дата
2019-04-10
Патентообладатели
"Акционерное общество ""Федеральный научно-производственный центр ""Производственное объединение ""Старт"" им. М.В. Проценко"" "
Авторы
Чернышев Дмитрий Львович , Николотов Алексей Дмитриевич , Сергунов Алексей Анатольевич , Фадеев Владимир Витальевич , Селиванов Владимир Николаевич , Сергунова Елена Сергеевна