Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
ОЦЕНКА УСИЛИЯ НА РОБОТОХИРУРГИЧЕСКОМ ИНСТРУМЕНТЕ / RU 02721462 C1 20200519/
Открыть
Описание
Изобретение относится к медицине, а именно к системе минимального инвазивного вмешательства. Система включает манипулятор и систему оценки сил, воздействующих на инструмент в течение хирургической операции. Манипулятор имеет опору, сконфигурированную для закрепления троакара и для закрепления привода хирургического инструмента. Система оценки сил включает трехосевой нижний тензометрический датчик (2), трехосевой верхний тензометрический датчик (1), датчик усилия захвата исполнительных поверхностей инструмента и датчик момента вращения хирургического инструмента. Трехосевой нижний тензометрический датчик расположен на опоре манипулятора в месте закрепления троакара и находится в непосредственном контакте с ним. Трехосевой верхний тензометрический датчик расположен на опоре манипулятора под приводом хирургического инструмента. Датчик усилия захвата выполнен в виде датчика силы тока для электродвигателя привода инструмента, обеспечивающего сжатие исполнительных поверхностей инструмента. Датчик момента вращения выполнен в виде датчика силы тока для электродвигателя привода инструмента, обеспечивающего вращение хирургического инструмента вокруг его продольной оси. Тензометрические датчики соединены с модулями цифровой обработки данных. Датчик усилия захвата и датчик момента вращения соединены с системами управления электродвигателем. Модули цифровой обработки и системы управления электродвигателями соединены с модулем обработки, который запрограммирован для осуществления вычисления: сил, направленных вдоль линейных осей; вращательных моментов инструмента вдоль осей х и у относительно точки ввода троакара в тело пациента; вращательного момента инструмента вдоль оси z относительно точки ввода троакара в тело пациента; усилия сжатия исполнительных поверхностей инструмента. Каждый модуль цифровой обработки запрограммирован для использования цифрового фильтра нижних частот и алгоритма полосно-заграждающего фильтра для данных усилия, измеренных тензометрическим датчиком. Модуль обработки запрограммирован для: компенсации силы тяжести, действующей на опору манипулятора и инструмента; компенсации сил, вызываемых сопротивлением троакара движению инструмента; компенсации динамических характеристик элементов, размещенных на оси вращения электродвигателей. Модуль обработки выполнен с возможностью передачи данных на систему управления роботохирургическим комплексом. Изобретение обеспечивает достоверное определение источников сил, воздействующих на хирургический инструмент во время работы, а также точное измерение этих сил в условиях повышенного электромагнитного шума. 2 з.п. ф-лы, 9 ил. Подробнее
Дата
2019-12-25
Патентообладатели
АССИСТИРУЮЩИЕ ХИРУРГИЧЕСКИЕ ТЕХНОЛОГИИ , ЛТД
Авторы
Пушкарь Дмитрий Юрьевич , Нахушев Рахим Суфьянович
Скважинная насосная установка для добычи битуминозной нефти / RU 02724701 C1 20200625/
Открыть
Описание
Изобретение относится нефтегазодобывающей промышленности, в частности к устройствам с устьевым приводом для добычи битуминозной нефти из горизонтальных скважин. Скважинная насосная установка для добычи битуминозной нефти содержит колонну насосно-компрессорных труб с насосом, состоящим из корпуса и ротора с выходным валом больше длины ротора. Штанги, спущенные в ствол скважины для добычи нефти. Наземный привод для вращения штанг, хвостовик с фильтром на приеме насоса, спущенного в горизонтальный участок ствола скважины. Для вращения выходного вала с ротором шлицевой вал соединен с колоколом, оснащенным внутренними шлицами, с возможностью ограниченного продольного перемещения и образованием телескопической пары. Телескопическая пара шлицевым валом или колоколом жестко соединена с удлиненным выходным валом, колокол снабжен центратором, а выходной вал - центратором с упором, ограничивающим вход выходного вала в колокол. Длина шлицевого вала и колокола выбраны такими, чтобы компенсировать удлинение или сжатие штанг с запасом при любых возможных изменениях температуры внутри ствола скважины. Шлицевой вал на торце снабжен ограничителем, предотвращающим выход его из колокола. Достигается технический результат - увеличение ресурса работы между ремонтами и возможность исключения постоянного контроля за работой насосной установки. 2 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-12-18
Патентообладатели
Публичное акционерное общество "Татнефть" имени В.Д. Шашина
Авторы
Амерханов Марат Инкилапович , Латфуллин Рустэм Русланович , Нуруллин Ильнар Загфярович
ПРОГУЛОЧНЫЕ ПАЛКИ ГРИГОРИЯ УШАКОВА ДЛЯ СКАНДИНАВСКОЙ ХОДЬБЫ / RU 02724812 C1 20200625/
Открыть
Описание
Изобретение относится к конструкции палок, предназначенных для опоры при ходьбе, а именно для скандинавской ходьбы на открытом воздухе в темное время суток и в теплое время года. Прогулочные палки выполнены в виде правой и левой палки с асимметричными ручками для анатомического захвата ручки правой палки кистью правой руки, ручки левой палки кистью левой руки, соответствующие ручки имеют геометрические формы и фигурные поверхности, аналогичные формам и поверхностям слепков-отпечатков, полученным при сжатии модельной ручки, выполненной из пластичного материала типа пластилина, кистью правой или левой руки взрослого человека со средними статистическими размерами пальцев и кистей рук, вся торцевая поверхность ручки покрыта меткой в виде буквы «П» на правой палке и буквы «Л» на левой палке, наружная поверхность каждого трубчатого сегмента древка покрыта светоотражающей пленкой и/или краской красного цвета, участки покрытия имеют форму полных колец с шириной более 1 мм, а кольца расположены поперек оси древка. Использование устройства обеспечивает повышение эффективности, точности и скорости анатомического захвата ручек кистями правой и левой рук, выравнивание величин удельного давления, оказываемого поверхностями ручек на рабочие поверхности кистей обеих рук, сохранение равномерности кровоснабжения мягких тканей ладонных поверхностей кистей обеих рук, повышение эффективности опоры на палки во время ходьбы, уменьшение вероятности наезда транспортного средства на ходока в темное время суток и улучшение настроения человека. 2 ил. Подробнее
Дата
2019-12-11
Патентообладатели
Ушаков Григорий Евгеньевич
Авторы
Ураков Александр Ливиевич , Ушаков Григорий Евгеньевич
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛОКРЕМНЕЗИТА НА ОСНОВЕ ОТХОДОВ ПРОИЗВОДСТВА МИНЕРАЛЬНОЙ ВАТЫ / RU 02720044 C1 20200423/
Открыть
Описание
Изобретение относится к способам получения стеклокремнезита и может быть использовано в промышленности строительных материалов. Задачей, на решение которой направлено изобретение, является повышение качества стеклокремнезита, в частности прочности на сжатие, морозостойкости и микротвердости. Это достигается тем, что стеклянные бытовые отходы, представленные в виде отходов производства минеральной ваты, предварительно термически обрабатывают при температуре 700-750°С, измельчают, прессуют и спекают при температуре 1160-1180°С. 3 табл. Подробнее
Дата
2019-12-11
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Белгородский государственный технологический университет им. В.Г. Шухова"" "
Авторы
Бондаренко Надежда Ивановна , Бондаренко Марина Алексеевна , Кочурин Дмитрий Владимирович , Минько Нина Ивановна , Бессмерный Василий Степанович , Добринская Ольга Александровна
Способ определения механических напряжений в стальном трубопроводе / RU 02722333 C1 20200529/
Открыть
Описание
Изобретение относится к области оценки технического состояния стальных трубопроводов и может быть использовано для определения механических напряжений, например, в стальных трубопроводах подземной прокладки. Сущность: осуществляют изготовление образца в виде полого цилиндра из материала, аналогичного материалу трубопровода, пошаговое нагружение образца созданием в нем избыточного внутреннего давления жидкой или газовой среды и его изгибом, получение зависимости коэрцитивной силы от величины механических напряжений в образце. Назначают две контрольные точки на окружности образца: одну - в зоне растяжения при изгибе, вторую - в зоне сжатия при изгибе. Нагружение образца производят одновременным действием изгиба и внутреннего давления среды. Измеряют коэрцитивную силу в контрольных точках, ориентируя датчик коэрцитиметра вдоль оси образца. Строят графики зависимости коэрцитивной силы Нс от изгибных напряжений σизг, при различных давлениях среды Рвн. Определяют сечение трубопровода с потенциально высокими изгибными напряжениями. Намечают точки контроля окружности трубопровода в выбранном сечении, измеряют коэрцитивную силу в выбранных точках, ориентируя датчик коэрцитиметра таким образом, чтобы направление магнитного потока в датчике совпадало с осью трубопровода. Выбирают среди измеренных значений максимальное и минимальное, при этом эти значения должны относиться к диаметрально противоположным точкам сечения трубопровода, считают, что точка с минимальным значением коэрцитивной силы связана с зоной максимальных растяжений, с максимальным значением - с зоной максимального сжатия. Определяют угол плоскости изгиба, проходящей через точки максимальных растяжений и сжатия, измеряют давление в трубопроводе и определяют изгибные напряжения в трубопроводе при помощи полученной зависимости для соответствующего давления. Технический результат: возможность определения механических напряжений в стенке стального трубопровода с учетом одновременного воздействия поперечного изгиба и внутреннего давления транспортируемой среды, повышение достоверности способа, расширение его возможностей. 3 ил. Подробнее
Дата
2019-12-09
Патентообладатели
"Публичное акционерное общество ""Транснефть"" , Акционерное общество ""Транснефть-Север"" "
Авторы
Агиней Руслан Викторович , Исламов Рустэм Рильевич , Мамедова Эльмира Айдыновна
УСТРОЙСТВО ДЛЯ ПОВЕРХНОСТНОЙ ОТДЕЛОЧНО-УПРОЧНЯЮЩЕЙ ОБРАБОТКИ ДЕТАЛЕЙ / RU 02721486 C1 20200520/
Открыть
Описание
Изобретение относится к устройствам для поверхностной отделочно-упрочняющей обработки деталей. Устройство содержит корпус с деформирующими элементами в виде цилиндрических стержней из упругого материала, регулируемый нажимной механизм в виде плунжера, поджимаемого пружиной, и расположенный между плунжером и торцом переходных цилиндрических стержней слой шариков. Деформирующие элементы выполнены сменными и устанавливаются в резьбовые отверстия переходных цилиндрических стержней. Диаметр бойковой части деформирующих элементов d определяется из соотношения: где F – сила удара плунжера по слою шариков, Н; ν – частота ударов плунжера, Гц; t – время обработки поверхности детали, с; Nс – число установленных переходных цилиндрических стержней; σ – задаваемое напряжение сжатия в материале поверхностного слоя обрабатываемой детали, Па; Кп – коэффициент потерь, читывающий снижение силы удара F от плунжера до деформирующих элементов, который принимается в зависимости от диаметров шариков и числа деформирующих элементов равным Кп = 0,7 – 0,9. В результате чего, упрощается конструкция устройства. 1 табл., 2 ил. Подробнее
Дата
2019-12-02
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Донской государственный технический университет"", "
Авторы
Бутенко Виктор Иванович , Тамаркин Михаил Аркадьевич , Иванова Елена Геннадьевна
АППАРАТ «ШЕРЗОД» ДЛЯ ЛЕЧЕНИЯ ВЫВИХА ГОЛОВКИ ЛУЧЕВОЙ КОСТИ / RU 02724024 C1 20200618/
Открыть
Описание
Изобретение относится к медицинской технике. Аппарат для лечения вывиха головки лучевой кости содержит проксимальную и дистальную опоры, связанные резьбовыми стержням, стержень-шуруп. Аппарат имеет спицы для фиксации в локтевой кости, концы которых фиксируют на проксимальной и дистальной опорах. Опоры выполнены в виде разъемных колец и имеют сквозной паз, верхняя и нижняя поверхность которого образуют направляющие. Стержень-шуруп предназначен для фиксации в проксимальном отделе лучевой кости, установлен в подшипнике с использованием двух гаек и пружины сжатия. Подшипник установлен в пазу с возможностью движения вдоль направляющих. Упомянутый стержень-шуруп установлен на опоре с возможностью поворота относительно оси вращения проксимальной опоры и с возможностью упругого продольного перемещения относительно подшипника. Упомянутые спицы установлены в спицефиксаторах-натягивателях в виде резьбового стержня со сквозным осевым каналом для прохода спицы и гайками. Натяжение и фиксация спицы осуществляются подкручиванием гайки на резьбовом стержне спицефиксатора-натягивателя. Спицефиксаторы-натягиватели установлены в центральных отверстиях подшипников на опорах с фиксирующими шайбами так, что движение подшипника ограничено за счет фиксирующей шайбы, контактирующей с боковой поверхностью опоры. Изобретение обеспечивает возможность осуществления ротационных движений лучевой кости при ограничении ее продольных перемещений. 4 з.п. ф-лы, 5 ил. Подробнее
Дата
2019-12-01
Патентообладатели
ЭРАНОВ Шерзод Нуралиевич
Авторы
ЭРАНОВ Шерзод Нуралиевич
Устройство защиты от разрушения опорных зон опытных образцов из полимерных композиционных материалов при их статических испытаниях на сжатие / RU 02724123 C1 20200622/
Открыть
Описание
Изобретение относится к области испытательной техники, предназначено для использования в отраслях промышленности, применяющих высокопрочные полимерные композиционные материалы (ПКМ). Устройство содержит пару металлических наконечников, оснащенных фиксатором из пластичного металла для защиты опорной зоны опытного образца вблизи его торцов от разрушения в процессе сжатия. Пара металлических наконечников выполнена в виде пары сборно-разборных узлов защиты опорной зоны опытного образца от разрушения, каждый из которых состоит из опорной обоймы, имеющей выемку с внутренней резьбой, и из вводимой через резьбовое соединение в упомянутую обойму втулки с внутренней полостью, а фиксатор из пластичного материала выполнен в виде сплошной шайбы. Внутренняя полость втулки содержит цилиндрическую выемку под упомянутую сплошную шайбу из пластичного материала, глубиной, не менее высоты сплошной шайбы, и следующий непосредственно за ней конический участок в форме усеченного кругового конуса с диаметром основания конуса, соответствующим диаметру сплошной шайбы, предназначенный для обжатия опорной зоны опытного образца однородным пластичным материалом шайбы и обеспечения заделки торцевой поверхности опытного образца в процессе его сжатия. Высота конуса и угол конусности выбраны из условия, чтобы объем выемки конусной камеры за вычетом объема части опытного образца, находящегося в пределах конического участка, был менее объема материала сплошной шайбы. В торцевой стенке втулки имеется цилиндрическое или призматическое центральное отверстие для свободного прохода через него соответствующего испытуемого опытного образца. Технический результат: возможность многоразового использования устройства для проведения массовых испытаний опытных образцов при одновременном повышении эффективности защиты поверхности опорных зон цилиндрических или призматических опытных образцов из полимерных композиционных материалов в процессе их статических испытаний на сжатие для получения корректных значений предела прочности материала при сжатии. 3 з.п. ф-лы, 5 ил. Подробнее
Дата
2019-11-22
Патентообладатели
"Федеральное государственное унитарное предприятие ""Крыловский государственный научный центр"" "
Авторы
Лавров Алексей Валентинович , Баранов Владимир Михайлович , Кильдеев Тагир Равилевич
Способ осушения углекислого газа после регенерации синтетического цеолита при производстве жидкой двуокиси углерода высшего сорта из подземных источников / RU 02717063 C1 20200317/
Открыть
Описание
Изобретение предназначено для отраслей промышленности, использующих двуокись углерода высшего сорта, и может быть использовано при производстве жидкого диоксида углерода. Смесь природного углекислого газа и водяных паров поступает в газгольдер 1 при открытом вентиле 2. Из газгольдера при давлении 0,17 МПа и температуре 10°С через открытый вентиль 4 подается в адсорбер влаги 7 с синтетическим цеолитом марки КА-СО. В это время второй адсорбер 8 находится на регенерации. Закрыты вентили 3, 5, 9 – 11, 14, открыты вентили 4, 6, 12. Из адсорбера 7 осушенный газ всасывается двухступенчатым безмасляным углекислотным компрессором 15. После первой ступени сжатия газ с давлением 0,4 МПа и температурой 70°С поступает в промежуточный водяной холодильник 16, где охлаждается. Далее охлажденный углекислый газ при температуре 15 – 30°С всасывается второй ступенью компресса и сжимается до давления 1,75 МПа и температуры 120 – 130°С. Затем основная часть газа нагнетается в водяной холодильник 17, проходя который газ направляется на конденсацию, а небольшая часть 1,92 – 1,95% от расхода газа подается в адсорбер 8, через вентиль 6, для регенерации цеолита. Продолжительность регенерации в сутки составляет 0,92 – 1,1 часа. После регенерации и остывания цеолита в адсорбере 8, продолжительностью 2,8 – 3,12 часа, его включают в работу, а работающий до этого адсорбер 7 переключают на регенерацию. Углекислый газ и пары воды из регенерируемого адсорбера 8 при давлении 0,17 МПа при открытом вентиле 9 поступают в водяной холодильник 13, где охлаждаются до температуры 30 – 50°С и углекислый газ осушается. Далее при открытом вентиле 14 газ смешивается с осушенным углекислым газом после адсорбера при температуре смеси 10,5 – 11°С и всасывается первой ступенью компрессора 15. Изобретение позволяет увеличить производительности установки получения жидкой углекислоты из подземных источников при постоянных эксплуатационных затратах, что повлечет снижение себестоимости получаемой жидкой углекислоты. 1 ил, 3 пр. Подробнее
Дата
2019-11-21
Патентообладатели
Федеральное государственное бюджетное учреждение науки Научно-исследовательский геотехнологический центр Дальневосточного отделения Российской академии наук
Авторы
Иодис Валентин Алексеевич
Система изменения плавучести и дифферента АНПА с автоматическим управлением / RU 02724920 C1 20200626/
Открыть
Описание
Изобретение относится к области подводного судостроения, в частности к системам управления плавучестью и дифферентом подводных устройств. Система изменения плавучести и дифферента подводного технического средства содержит две независимые размещенные в оконечностях уравнительно-дифферентные цистерны для приема забортной воды, высоконапорные электронасосы, трубопроводы с запорной арматурой, блок автоматики с дистанционным управлением. Уравнительно-дифферентные цистерны выполняют функцию как уравнительных, так и дифферентных цистерн. Уравнительно-дифферентные цистерны не связаны с отсеками, в которых находятся, и выполнены с учетом повышения давления из-за сжатия находящегося внутри воздуха и размещения в сжимаемом воздушном пространстве остальных элементов системы. Давление в цистернах изменяется пропорционально их степени заполнения, что позволяет определить, насколько заполнена цистерна, через определение давления с учетом поправок на изменение температуры и влажности воздуха. Достигается изменение дифферента компактности и расширения ее функциональности. 1 ил. Подробнее
Дата
2019-11-15
Патентообладатели
Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Авторы
Почекаев Александр Валентинович , Перевозчиков Владимир Юрьевич , Клинов Владимир Анатольевич , Лобачев Сергей Юрьевич
ПЛАНАРНАЯ ГРАДИЕНТНАЯ ОПТИЧЕСКАЯ СИСТЕМА (ВАРИАНТЫ) / RU 02720482 C1 20200430/
Открыть
Описание
Изобретение относится к области солнечной энергетики, а именно к оптическим системам, обеспечивающим повышение концентрации светового излучения. Планарная градиентная оптическая система включает в себя градиентную пластину с плавно изменяющимся показателем преломления от большего значения на верхней поверхности Nв к меньшему значению на нижней поверхности Nн, и оптический клин с углом наклона β, примыкающий к нижней поверхности градиентной пластины и оптически с ней связанный. На верхнюю поверхность градиентной пластины нанесен прозрачный ребристый слой с показателем преломления Nв, соответствующим показателю преломления Nв верхней поверхности градиентной пластины, причем ребра выполнены с наклоном к поверхности градиентной пластины, обеспечивающим падение солнечных лучей на поверхность ребер под углом 90° или под углом, находящимся в диапазоне от 83° до 97°. Технический результат - повышение концентрации солнечного излучения за счет сжатия светового потока по двум осям. 2 н. и 6 з.п. ф-лы, 6 ил. Подробнее
Дата
2019-11-13
Патентообладатели
Федеральное государственное бюджетное учреждение науки Научный центр волоконной оптики Российской академии наук
Авторы
Семенов Сергей Львович , Ложенко Александр Сергеевич
СПОСОБ ОТБОРА ПРОБ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА (СПГ) / RU 02716442 C1 20200311/
Открыть
Описание
Изобретение относится к области получения и подготовки образцов сжиженного природного газа (СПГ) для анализа, в частности к обеспечению закачки пробы СПГ в пробоотборник, и может быть использовано в криогенной газовой промышленности. Способ включает отбор пробы СПГ, ее регазификацию, поддержание требуемого давления и транспортировку одной части пробы на газовый хроматограф для химического анализа, а другой части для сжатия и закачки в пробоотборник постоянного давления для анализа в лабораторных условиях, что производится жидкостно-газовым эжектором за счет разницы давления потока СПГ, который поступает по линии, соединенной с зондом и технологическим трубопроводом СПГ для подачи на эжектор, и потока регазифицированной пробы, который создает область разрежения в камере смешения жидкостно-газового эжектора и обеспечивает подачу СПГ. Технический результат - предотвращение изменения первоначального химического состава пробы, а также сокращение объема пробы, подвергающейся регазификации. 2 ил. Подробнее
Дата
2019-11-06
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Санкт-Петербургский горный университет"" "
Авторы
Воронов Владимир Александрович , Мартыненко Яна Владимировна
Рама защитная противотраловая с удлинителями с опорно-фиксирующим механизмом / RU 02717013 C1 20200317/
Открыть
Описание
Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для защиты подводных колонных головок от механического воздействия падающих объектов и проходящего трала. Предложена рама защитная противотраловая с удлинителями с опорно-фиксирующим механизмом, содержащая защитный корпус, телескопические удлинители, опорно-фиксирующие механизмы. Каждый из удлинителей размещен между внутренней поверхностью корпуса опоры и внешней поверхностью корпуса телескопического удлинителя и содержит разделитель, причем в указанном утолщении выполнено множество продольных каналов. На внешней поверхности корпуса телескопического удлинителя размещена втулка, содержащая множество продольных каналов, корреспондирующих множеству продольных каналов разделителя, множество осевых элементов и множество пружин, и множество круговых рядов шариков, размещенных в углублениях, выполненных по периметру разделителя, так, чтобы образовывать выступающую часть, причем каждый из шариков выполнен с возможностью вращения в углублении. Причем каждый из осевых элементов содержит поперечное утолщение и выполнен с возможностью размещения в продольном канале разделителя и корреспондирующем ему продольном канале втулки с формированием полости в расширении продольного канала втулки. А каждая из множества пружин выполнена с возможностью размещения в указанной полости вокруг корреспондирующего ей осевого элемента и зацепления своими окончаниями за поперечное утолщение осевого элемента с одной стороны и разделителя с другой. На внутренней поверхности корпуса опоры размещена обойма с образованием между обоймой и разделителем множества круговых пазов, корреспондирующих круговым рядам шариков. Причем каждый из круговых пазов образован скосом, выполненным во внутренней поверхности обоймы. Разделитель вместе с шариками выполнен с возможностью перемещения из положения, в котором при выдвижении телескопического удлинителя из опоры за счет прилегания разделителя к втулке и сжатия пружин обеспечено прилегание шариков к корпусу телескопического удлинителя и обойме, в положение, в котором при перемещении телескопического удлинителя обратно в опору за счет разжатия пружин и перемещения шариков по скосу обоймы обеспечено их вдавливание в корпус телескопического удлинителя и зацепление с указанным корпусом. 6 з.п. ф-лы, 8 ил. Подробнее
Дата
2019-11-05
Патентообладатели
"Общество с ограниченной ответственностью ""Газпром 335"" "
Авторы
Шарохин Виктор Юрьевич , Демченко Александр Юрьевич , Котиков Максим Михайлович , Милославская Светлана Владимировна , Еремеев Николай Григорьевич , Тарасов Василий Андреевич , Айдумов Эльдар Насимович
СПОСОБ ДИАГНОСТИРОВАНИЯ ДЕТАЛЕЙ ЦИЛИНДРОПОРШНЕВОЙ ГРУППЫ И ГАЗОРАСПРЕДЕЛИТЕЛЬНОГО МЕХАНИЗМА ДВИГАТЕЛЯ / RU 02715132 C1 20200225/
Открыть
Описание
Изобретение относится к технической диагностике и может быть использовано для определения технического состояния деталей цилиндропоршневой группы и газораспределительного механизма двигателя без его пуска. Способ диагностирования деталей цилиндропоршневой группы и газораспределительного механизма двигателя включает проверку уровня масла в картере двигателя. Если уровень масла меньше или больше нормы, то его доводят до нормы по показанию масломерной линейки (щупа). Отключают подачу топлива в цилиндры. В осциллографическом устройстве с функцией запоминания изображения, используемом для анализа синусоидального сигнала, на экран которого специально наносят шкалу соответствия между определяемым осциллографическим устройством изображением кривой, изменяющейся в зависимости от величины тока, потребляемого стартером, и значением величины давления в цилиндрах двигателя, устанавливают необходимый режим и масштаб измерений. Подключают его к аккумуляторной батарее системы электрооборудования диагностируемого двигателя. Датчик стробоскопа соединяют со штуцером или топливопроводом ТНВД первого цилиндра. Стартером прокручивают коленчатый вал диагностируемого двигателя без его пуска, одновременно с этим стробоскоп направляют на начало экрана осциллографического устройства с той стороны, откуда появляется при прокрутке коленчатого вала двигателя кривая в форме синусоиды, максимумы которой соответствуют приходу поршней цилиндров в верхнюю мертвую точку на такте сжатия, на уровне ее максимального значения. Стробоскоп осветит точку на синусоиде. Контролируют прохождение этой точки, которая будет находиться на одной из вершин синусоиды и соответствовать приходу поршня первого цилиндра в верхнюю мертвую точку на такте сжатия, по всему экрану осциллографического устройства и при перемещении точки в противоположную часть экрана фиксируют и запоминают положение синусоиды при помощи осциллографического устройства. Выводят запомненное положение синусоиды на экран. Зная максимум синусоиды, который соответствует моменту прихода поршня первого цилиндра в верхнюю мертвую точку на такте сжатия, порядок работы цилиндров двигателя, используя специальную шкалу экрана осциллографического устройства, по максимальным значениям синусоиды, которые будут соответствовать приходу поршней разных цилиндров в верхнюю мертвую точку на такте сжатия, делают заключение о техническом состоянии деталей цилиндропоршневой группы и газораспределительного механизма отдельных цилиндров двигателя. Технический результат – повышение достоверности контроля технического состояния деталей цилиндропоршневой группы и газораспределительного механизма двигателя. 1 ил. Подробнее
Дата
2019-10-23
Патентообладатели
Нечаев Виталий Викторович
Авторы
Нечаев Виталий Викторович
Дробильный комплекс для измельчения кусковых материалов и способ дробления кускового материала с использованием дробильного комплекса / RU 02724219 C1 20200622/
Открыть
Описание
Изобретение относится к предварительной обработке рудных материалов путем их дробления. Обеспечивают входной гранулометрический контроль крупности кусков горной породы. Осуществляют дополнительное точечное циклически-ударное воздействие на крупные куски горной породы выдвижными рабочими бойками дополнительных дробильных блоков перпендикулярно направлению действия силы сжатия щек дробилки. Обеспечивают автоматическую полную разгрузку камеры дробления от недробленых крупных кусков горной породы. В результате расширяются технологические возможности дробильного комплекса, повышается его производительность и надежность работы с одновременным снижением энергозатрат на дробление. 2 н. и 4 з.п. ф-лы, 7 ил. Подробнее
Дата
2019-10-22
Патентообладатели
"Общество с ограниченной ответственностью ""Инновационные металлургические технологии"" "
Авторы
Злобин Анатолий Аркадьевич , Ковтушенко Владимир Анатольевич
Поршневой двухступенчатый компрессор / RU 02722588 C1 20200601/
Открыть
Описание
Изобретение относится к области машин объемного вытеснения и может быть использовано при создании компрессоров среднего и высокого давления. Поршневой двухступенчатый компрессор содержит цилиндры 1 первой и 2 второй ступени, поршни 3 и 4, соединенные штоком 5 с приводом возвратно-поступательного движения 6. Поршень 3 делит цилиндр 1 на две части – газовую 7 и жидкостную 8 полости и содержит выступ в виде поршня 9, входящего в дополнительный цилиндр 10, заполненный охлаждающей жидкостью,  соединенный с системой охлаждения 11 цилиндра 1, в которую включена подпоршневая полость 8 и полость 12 цилиндра 10. Достигается возможность сжатия газа в двух ступенях компрессора до давления выше 100 бар. Данная конструкция может заменить обычный трех-четырехступенчатый поршневой компрессор. 3 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-10-21
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Омский государственный технический университет"" "
Авторы
Щерба Виктор Евгеньевич , Носов Евгений Юрьевич , Тегжанов Аблай-Хан Савитович , Шалай Виктор Владимирович
Привод криволинейного перемещения / RU 02722916 C1 20200604/
Открыть
Описание
Предлагаемое устройство относится к области машиностроения, роботостроения и может использоваться в пневматическом оборудовании. Наиболее эффективно применение устройства при выполнении сборочных операций для устранения рассогласования взаимного расположения осесимметричных изделий. Привод криволинейного перемещения, включает поворотный механизм, состоящий из сильфона и двух заглушек, образующих герметичную полость, выполненную с возможностью создания в ней давления разрежения воздуха, а в первой заглушке средней частью закреплен рычаг, выполненный с возможностью перекоса и подпружинен в среднем положении, часть рычага, расположенная внутри полости сильфона, выполнена с возможностью силового взаимодействия с поверхностью второй заглушки при сжатии сильфона. В приводе криволинейного перемещения с целью увеличения его чувствительности, часть рычага, расположенная внутри полости сильфона, выполнена составной телескопического исполнения и подпружинена в сторону выдвижения. В приводе криволинейного перемещения с целью увеличения его чувствительности, поверхность второй заглушки в полости сильфона выполнена в виде бобышки. В приводе криволинейного перемещения с целью устранения отклонения криволинейного перемещения от заданной траектории на поверхности второй заглушки установлены радиальные направляющие. Техническое решение повышает эффективность работы привода криволинейного перемещения путем конструктивного упрощения, повышения надежности, долговечности, чувствительности, а также устранения возможности отклонения от заданной траектории перемещения. 3 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-10-15
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых"" "
Авторы
Сысоев Сергей Николаевич , Жулин Сергей Васильевич , Цаплин Роман Олегович
ЗАТРУБНОЕ УПЛОТНЕНИЕ С УПЛОТНЕНИЕМ МЕТАЛЛ ПО МЕТАЛЛУ / RU 02719798 C1 20200423/
Открыть
Описание
Изобретение относится к затрубному уплотнению с уплотнением металл по металлу. Техническим результатом является повышение надежности герметизации. Затрубное уплотнение с уплотнением металл по металлу содержит уплотнение металл по металлу, корпус якоря верхний, корпус верхний, штифты срезные верхние, винты срезные верхние, якорь нижний, корпус нижний, штифты срезные нижние, винты срезные нижние. Корпус якоря верхний выполнен в виде цилиндра, имеет в верхней части профиль для фиксации инструментов для установки и извлечения затрубного уплотнения. В нижней части корпуса якоря верхнего содержатся крюки. Крюки имеют профиль с углом для зацепления с цанговыми лепестками корпуса верхнего и сжатия цанговых лепестков. Нижняя часть корпуса якоря верхнего по линии окружности включает отверстия для установки штифтов срезных. Корпус якоря верхний размещен в корпусе верхнем и зафиксирован относительно него при помощи штифтов срезных. Корпус верхний имеет в нижней части клиновой элемент для активации уплотнения, а в верхней части цанговые лепестки. Цанговые лепестки корпуса верхнего содержат продольные пазы для установки и движения в них крюков корпуса якоря верхнего, и отверстия для установки штифтов срезных и фиксации относительно корпуса якоря верхнего. Клиновой элемент включает отверстия для установки винтов срезных и фиксации относительно уплотнения. Грани продольных пазов-направляющих корпуса верхнего, расположенные в верхней части корпуса могут быть выполнены в виде фаски с углом равным углу на крюках корпуса якоря верхнего, служащие для зацепления крюками корпуса верхнего и сжатия цанговых лепестков. Уплотнение имеет кольцевые профили и с обоих сторон уплотнения содержит отверстия для установки винтов срезных и фиксации относительно корпуса верхнего и корпуса нижнего. Якорь нижний имеет в верхней части цанговые лепестки, которые включают продольные пазы, служащие направляющими для установки и движения в них крюков корпуса нижнего и отверстия для установки штифтов срезных. Грани продольных пазов-направляющих якоря нижнего выполнены в виде фаски с углом равным углу на крюках корпуса нижнего. Корпус нижний имеет клиновой элемент для активации уплотнения и крюки. Клиновый элемент содержит отверстия для установки винтов срезных. Корпус колонной головки колонны кондуктора имеет на внутренней поверхности уплотнительную поверхность, а также зубчатый профиль, обеспечивающий фиксацию затрубного уплотнения. Корпус подвески обсадной колонны имеет на наружной поверхности уплотнительную поверхность, а также зубчатый профиль, обеспечивающий фиксацию затрубного уплотнения. 2 з.п.ф-лы, 13 ил. Подробнее
Дата
2019-10-07
Патентообладатели
"Общество с ограниченной ответственностью ""Газпром 335"" "
Авторы
Шарохин Виктор Юрьевич , Поляков Александр Игоревич , Еремеев Николай Григорьевич , Щербин Борис Олегович
Способ использования катализатора гидрирования диолефинов в процессе гидрогенизационной переработки нефтяного сырья / RU 02714139 C1 20200212/
Открыть
Описание
Изобретение относится к способам использования катализатора гидрирования диолефинов в процессе гидрогенизационной переработки нефтяного сырья и может быть использовано в нефтеперерабатывающей промышленности. Предлагается способ использования катализатора гидрирования диолефинов в процессе гидрогенизационной переработки нефтяного сырья, при котором сырье пропускают через реактор с неподвижным слоем пакета катализаторов, состоящим из основного катализатора гидропереработки, в качестве которого используют алюмоникельмолибденовый и/или алюмокобальтмолибденовый катализатор, и расположенных над ним защитных слоев. Защитные слои включают: слой А - инертный материал для удаления механических примесей, слой Б - катализатор гидрирования диолефинов, состоящий из модифицированного носителя, приготовленного на основе высокопористого ячеистого материала с ячеистостью 10-30 меш, привитого слоя гамма-оксида алюминия, а также нанесенных на носитель биметаллических комплексных соединений металлов VIII и VI групп. Способ отличается тем, что используют катализатор слоя Б, приготовленный на основе высокопористого ячеистого материала с открытой пористостью не менее 50%, имеющий форму дисков диаметром 20-50 мм, высотой 20-30 мм, в активированном состоянии имеющий удельную поверхность 12-25 м2/г, эффективный диаметр пор 3-6,7 нм, ячеистость 10-30 меш, механическую прочность на сжатие не менее 200 Н, причем содержание компонентов в прокаленном при температуре 550°С катализаторе слоя Б составляет, мас.%: высокопористый ячеистый материал - 73,0-88,1; γ-Al2O3 в виде привитого слоя - 8,0-22,2; оксид никеля и/или кобальта - не менее 0,5; оксид молибдена - не менее 2,0. Защитные слои дополнительно включают слой В - алюмоникельмолибденовый или алюмомолибденовый катализатор защитного слоя, расположенный под слоями А и Б, причем защитные слои составляют 15-25% объема реактора, а содержание слоя Б составляет 27-65 об.% от катализаторов защитных слоев. Технический результат - разработка способа использования катализатора гидрирования диолефинов при пакетной загрузке в процессе комплексной гидроочистки углеводородного сырья, позволяющего добиться отсутствия диолефинов в продуктах гидрооблагораживания. 2 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-10-03
Патентообладатели
"Публичное акционерное общество ""Нефтяная компания ""Роснефть"" "
Авторы
Никульшин Павел Анатольевич , Алексеенко Людмила Николаевна , Гаврилова Елена Андреевна , Гусева Алёна Игоревна , Болдушевский Роман Эдуардович , Хамзин Юнир Азаматович , Филатов Роман Вадимирович
Состав и способ приготовления катализатора гидрирования диолефинов / RU 02714138 C1 20200212/
Открыть
Описание
Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций, а именно, к катализаторам защитного слоя для гидрирования диолефинов и к способам их приготовления. Предлагается катализатор гидрирования диолефинов для использования в составе защитного слоя в процессе гидрооблагораживания нефтяных дистиллятов, состоящий из модифицированного носителя, приготовленного на основе высокопористого ячеистого материала с ячеистостью 10-30 меш и привитого слоя гамма-оксида алюминия, а также нанесенных на носитель биметаллических комплексных соединений металлов VIII и VI групп. Катализатор отличается тем, что высокопористый ячеистый материал имеет открытую пористость не менее 50%, в качестве биметаллических комплексных соединений металлов VIII и VI групп катализатор включает соединения никеля или кобальта и молибдена, а содержание компонентов в прокаленном при температуре 550°С катализаторе составляет, мас.%: высокопористый ячеистый материал - 73,0-88,1; γ-Al2O3 в виде привитого слоя - 8,0-22,2; оксид никеля и/или кобальта - не менее 0,5; оксид молибдена - не менее 2,0, причем катализатор в активированном состоянии имеет удельную поверхность 12-25 м2/г, эффективный диаметр пор 3,0-6,7 нм, механическую прочность на сжатие - не менее 200Н. Технический результат - разработанный катализатор гидрирования диолефинов, обладающий функциями адсорбции и катализа, обеспечивает в условиях гидрогенизационного облагораживания нефтяных фракций глубину удаления диолефинов 90% и более, что позволяет уменьшить содержание кокса на катализаторе, снизить перепад давления по реактору и тем самым увеличить срок службы основного катализатора гидрооблагораживания до регенерации до не менее трех лет, а способ приготовления данного катализатора позволяет, при расширении сырьевой базы, обеспечить получение катализатора с оптимальными для гидрирования диолефинов характеристиками. 2 н. и 4 з.п. ф-лы, 3 табл. Подробнее
Дата
2019-10-03
Патентообладатели
"Публичное акционерное общество ""Нефтяная компания ""Роснефть"" "
Авторы
Никульшин Павел Анатольевич , Алексеенко Людмила Николаевна , Гаврилова Елена Андреевна , Гусева Алёна Игоревна , Болдушевский Роман Эдуардович , Филатов Роман Владимирович