Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
СПОСОБ ДЕЗАКТИВАЦИИ ПОВЕРХНОСТНО ЗАГРЯЗНЕННЫХ ИЗДЕЛИЙ ИЗ МЕТАЛЛИЧЕСКИХ СПЛАВОВ ИЛИ ИХ ФРАГМЕНТОВ / RU 02724627 C1 20200625/
Открыть
Описание
Изобретение относится к способам химической дезактивации металла с поверхностным загрязнением радионуклидами. Способ дезактивации поверхностно загрязненных изделий из металлических сплавов или их фрагментов, заключается в нанесении на дезактивируемую поверхность порошкового реагента, содержащего калий, натрий и серу, последующем нагреве поверхности, ее охлаждении путем обработки поверхности жидким азотом в количестве не менее 260 г на 1 кг обрабатываемой поверхности и очистке поверхности от образовавшейся окалины. Изобретение позволяет предотвратить улетучивание цезия в процессе дезактивации, за счет обеспечения резкого охлаждения МРАО после стадии нагрева. 1 табл. Подробнее
Дата
2019-12-25
Патентообладатели
Тихомиров Вячеслав Евгеньевич
Авторы
Тихомиров Вячеслав Евгеньевич , Тихомиров Денис Вячеславович
Способ и автоматическая система калибровки газоанализаторов с применением источников микропотока / RU 02722475 C1 20200601/
Открыть
Описание
Изобретение относится к измерительной технике, в частности к газоаналитическим измерениям, и может быть использовано для мониторинга состояния и состава атмосферы. Способ автоматической калибровки газоанализаторов включает подачу смеси с нулевым содержанием SO2 и NO2, калибровочной смеси известной концентрации, получаемой при помощи источников микропотока, на газоанализатор поочередно с пробами атмосферного воздуха в автоматическом режиме с использованием программно-управляемых клапанов, при этом подача нулевой и калибровочной смеси, а также проб атмосферного воздуха, с двух высотных уровней, осуществляется при помощи нагнетающих насосов, при этом объем подаваемой воздушной смеси на вход газоанализаторов превышает значение расхода самих газоанализаторов. Техническим результатом является разработка автоматической системы и способа калибровки газоанализаторов, позволяющий с высокой точностью осуществлять измерение концентрации в атмосферном воздухе, таких газов как: диоксид серы (SO2) и оксид азота (NO2). 2 н. и 5 з.п. ф-лы, 3 ил., 1 табл. Подробнее
Дата
2019-12-06
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук
Авторы
Белан Борис Денисович , Аршинов Михаил Юрьевич , Давыдов Денис Константинович , Козлов Артем Владимирович , Пестунов Дмитрий Александрович , Фофонов Александр Владиславович , Скляднева Татьяна Константиновна
Горячекатаная бесшовная насосно-компрессорная труба повышенной эксплуатационной надежности для нефтепромыслового оборудования / RU 02719618 C1 20200421/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству горячекатаной бесшовной насосно-компрессорной трубы повышенной эксплуатационной надежности, используемой для нефтепромыслового оборудования для добычи обводненной нефти и высокоминерализированных пластовых вод, содержащих углекислый газ, сероводород, ионы хлора, а также механические частицы. Бесшовная насосно-компрессорная труба получена из трубной заготовки из хромсодержащей стали, имеющей следующий состав, мас.%: от 0,22 до 0,38 углерода, 0,45 или менее кремния, от 0,80 до 1,45 марганца, 0,020 или менее фосфора, 0,010 или менее серы, 0,10 или менее алюминия, от 0,3 до 1,1 хрома, 0,12 или менее азота, по меньшей мере один компонент, выбранный из группы: 0,11 или менее ванадия и 0,07 или менее ниобия, остальное - железо (Fe) и неизбежные примеси. Для компонентов стали выполняются соотношения: 0,6≤|С|+|Mn|/4+|Cr|/5≤0,9 и 0,07≤|V|+2x|Nb|≤0,14, где |С|, |Mn|, |Cr|, |V| и |Nb| - абсолютная величина содержания, мас.%, углерода, марганца, хрома, ванадия и ниобия. Сталь может дополнительно содержать по меньшей мере один из: 0,20 мас.% или менее никеля, 0,25 мас.% или менее меди и 0,10 мас.% или менее титана. Трубную заготовку подвергают прошивке, прокатке в непрерывном стане и высокотемпературной термомеханической обработке в редукционном стане при температуре 950-1075°С с коэффициентом вытяжки 1,2-2,2. Обеспечивается требуемый уровень прочности, повышенная коррозионная стойкость и эксплуатационная надежность. 3 з.п. ф-лы, 1 ил., 3 табл. Подробнее
Дата
2019-12-04
Патентообладатели
"Акционерное общество ""Первоуральский новотрубный завод"" "
Авторы
Павлов Александр Александрович , Родионова Ирина Гавриловна , Александров Сергей Владимирович , Лаев Константин Анатольевич , Щербаков Игорь Викторович , Девятерикова Наталья Анатольевна , Ошурков Георгий Леонидович , Рогова Ксения Владимировна
ВЫСОКОДЕМПФИРУЮЩАЯ СТАЛЬ С ТРЕБУЕМЫМ УРОВНЕМ ДЕМПФИРУЮЩИХ СВОЙСТВ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЁ / RU 02721262 C1 20200518/
Открыть
Описание
Изобретение относится к металлургии, а именно к сталям, обладающим высокой демпфирующей способностью и использующимся при изготовлении холодно- и горячекатаных листов, сортового проката, при изготовлении элементов различных конструкций, а также деталей крепежа. Сталь содержит компоненты в следующем соотношении, мас.%: углерод не более 0,045, кремний 0,01-0,55, марганец 0,005-0,65, алюминий 3,0-7,7, титан 0,001-0,3, кобальт 0,052-0,095, хром 0,001-0,35, медь не более 0,2, никель не более 0,2, молибден 0,001-0,4, сера не более 0,02, фосфор не более 0,02, азот не более 0,015, железо и неизбежные примеси – остальное. Содержания титана, молибдена, кобальта и углерода удовлетворяют условию: [0,2Ti+0,1Mo+0,1Co-0,9C]>0, а содержания кобальта, марганца и никеля удовлетворяют условию: [0,9Co-0,1Mn-0,2Ni]>0. Повышается демпфирующая способность стали и изделий, выполненных из нее, в области повышенных амплитуд колебаний, составляющих от 2,85×10-4 до 3,15×10-4, при сохранении высокого уровня демпфирования в области малых амплитуд колебаний, составляющих от 0,85×10-4 до 1,15×10-4, а также при сохранении требуемого уровня ударной вязкости и относительного удлинения. 2 н. и 2 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-10-22
Патентообладатели
"Федеральное государственное унитарное предприятие ""Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина"" "
Авторы
Семенов Виктор Владимирович , Углов Владимир Александрович , Глезер Александр Маркович , Чудаков Иван Борисович
ИЗНОСОСТОЙКАЯ МЕТАСТАБИЛЬНАЯ АУСТЕНИТНАЯ СТАЛЬ / RU 02710760 C1 20200113/
Открыть
Описание
Изобретение относится к области металлургии, а именно к аустенитным метастабильным сталям, и может найти применение для изготовления изделий, работающих в условиях интенсивного абразивного воздействия или подвергаемых значительным ударным нагрузкам, в том числе для изготовления горнодобывающего и дробильного оборудования, ковшей экскаваторов, траков гусеничных машин, шнеков, бил молотковых дробилок, деталей землеройных и почвообрабатывающих машин. Сталь содержит, мас.%: углерод 0,03-0,10, кремний 0,15-0,50, марганец 3,50-4,0, хром 11,50-12,50, никель 2,80-3,50, азот 0,10-0,25, ванадий 0,30-0,35, титан 0,01-0,025, церий 0,005-0,025, кальций 0,005-0,02, молибден 0,35-0,45, алюминий 0,008-0,05, барий 0,005-0,02, железо и примеси - остальное. Сталь может дополнительно содержать ниобий 0,01-0,10 мас.% и/или цирконий 0,05-0,10 мас.%, а в качестве неизбежных примесей серу не более 0,015 мас.% и фосфор не более 0,015 мас.%. Повышаются прочностные характеристики и износостойкость стали. 2 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-10-10
Патентообладатели
"Акционерное общество ""Научно-производственное объединение ""Центральный научно-исследовательский институт технологии машиностроения"", АО ""НПО ""ЦНИИТМАШ"" , Общество с ограниченной ответственностью ""ГАН"" ООО ""ГАН"" "
Авторы
Дегтярев Александр Федорович , Скоробогатых Владимир Николаевич , Муханов Евгений Львович , Нуралиев Фейзулла Алибала оглы , Щепкин Иван Александрович , Кафтанников Александр Сергеевич , Ананьев Павел Петрович , Концевой Семен Израилович , Плотникова Анна Валериевна
Способ производства горячекатаного рулонного проката из низколегированной стали / RU 02709075 C1 20191213/
Открыть
Описание
Изобретение относится к области металлургии. Для снижения сегрегационной и структурной неоднородности проката, достижения требуемого уровня его механических свойств при повышении однородности их распределения способ включает выплавку и непрерывную разливку стали, нагрев и горячую прокатку заготовки, ускоренное охлаждение прокатанной полосы и последующую ее смотку в рулон. При этом выплавляют сталь, содержащую мас.%: углерод 0,20÷0,27; марганец 0,80÷1,40; кремний 0,20÷0,30; хром не более 0,30; никель не более 0,30; медь не более 0,30; титан не более 0,040; алюминий 0,015÷0,060; азот не более 0,012; сера не более 0,010; фосфор не более 0,015; кальций не более 0,020; молибден не более 0,040; железо и примеси - остальное. Содержание в выплавляемой стали углерода, марганца, серы и фосфора соответствует соотношению (24,63⋅С+1,22⋅Mn+15⋅S+2,35⋅Р)≤8,46, в котором каждый символ химического элемента обозначает содержание данного элемента в стали в мас.%. Нагрев заготовки осуществляют в нагревательной печи при температуре 850÷1050°С, время нахождения заготовки в нагревательной печи t в мин соответствует соотношению t=(k1⋅С)±10, где k1 - эмпирический коэффициент, составляющий k1=100÷200, С - содержание углерода в стали в мас.%. В процессе ускоренного охлаждения прокатанной полосы не менее чем в пяти местах по длине отводящего рольганга на ее верхнюю поверхность дополнительно через сопла подают воду, при этом упомянутые сопла установлены таким образом, что угол, образованный осью канала сопла и горизонтальной плоскостью, не является прямым, причем расход воды, подаваемой упомянутым образом, соответствует диапазону 10÷15 м3/час на 1 м2 поверхности полосы. 6 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-08-19
Патентообладатели
"Акционерное Общество ""Выксунский металлургический завод"" "
Авторы
Сомов Сергей Александрович , Эфрон Леонид Иосифович , Солдатов Евгений Александрович , Мунтин Александр Вадимович , Ермаков Дмитрий Иванович , Кудашов Дмитрий Викторович
ГОРЯЧЕКАТАНАЯ ПОЛОСА ВЫСОКОЙ КОРРОЗИОННОЙ СТОЙКОСТИ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ И СПОСОБ ЕЕ ПРОИЗВОДСТВА / RU 02720284 C1 20200428/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству горячекатаных полос из низколегированной стали, используемых для изготовления электросварных труб магистральных трубопроводов. Сталь имеет следующий химический состав, мас.%: углерод 0,04-0,07, кремний 0,15-0,25, марганец 0,60-0,80, хром 0,13-0,26, никель не более 0,06, медь не более 0,06, алюминий 0,03-0,06, ванадий не более 0,06, ниобий 0,04-0,06, суммарное содержание ниобия, ванадия и титана не более 0,15, молибден не более 0,01, азот не более 0,006, бор не более 0,0005, кальций не более 0,006, сера не более 0,002, фосфор не более 0,012, железо и примеси остальное. Металлографическая структура полосы включает не более 10% перлита, остальное – феррит. Балл неметаллических включений составляет не более 2,5 по среднему, не более 3 - по максимальному, а балл зерна феррита не крупнее 8. Обеспечивается получение полос, имеющих предел текучести по меньшей мере 390 МПа, предел прочности по меньшей мере 480 МПа и работу удара KV при 0°С по меньшей мере 100 Дж, а также высокие показатели коррозионной стойкости, в частности, при испытании на стойкость к сульфидному растрескиванию под напряжением, равным 95% от установленного минимального предела текучести, коэффициент чувствительности к растрескиванию (CSR) составляет не более 2%, коэффициент длины трещин (CLR) составляет не более 15%, а коэффициент толщины трещин (CTR) составляет не более 5%. 2 н.п. ф-лы, 1 табл. Подробнее
Дата
2019-08-16
Патентообладатели
"Публичное акционерное общество ""Северсталь"" "
Авторы
Дудинов Михаил Валериевич , Барабошкин Кирилл Алексеевич , Митрофанов Артем Викторович , Вархалева Татьяна Сергеевна
Аустенитная коррозионно-стойкая сталь с азотом / RU 02716922 C1 20200317/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству коррозионно-стойких аустенитных сталей, используемых для изготовления изделий, эксплуатирующихся в сильноокислительных и щелочных средах. Сталь содержит углерод, кремний, марганец, хром, никель, азот, магний или бор, железо и неизбежные примеси, в том числе серу, фосфор, медь, олово, сурьму, мышьяк, свинец и висмут, при следующем соотношении компонентов, мас.%: углерод ≤ 0,030, кремний ≤ 0,50, марганец 2,0-4,0, хром 17,0-21,0, никель 8,0-10,0, азот 0,25-0,35, магний 0,05 или бор 0,005, сера ≤ 0,015, фосфор ≤ 0,015, медь ≤ 0,20, олово ≤ 0,005, сурьма ≤ 0,005, мышьяк ≤ 0,005, свинец ≤ 0,005, висмут ≤ 0,005, железо - остальное. Обеспечивается стабильная аустенитная структура, вплоть до криогенных температур, повышенная прочность, а также высокая вязкость и стойкость к общей и межкристаллитной коррозии, в том числе коррозии под напряжением. 2 н.п. ф-лы, 4 ил., 4 табл. Подробнее
Дата
2019-08-14
Патентообладатели
"Общество с ограниченной отвественностью ""Лаборатория специальной металлургии"" "
Авторы
Мазничевский Александр Николаевич , Сприкут Радий Вадимович , Гойхенберг Юрий Нафтулович
Жаропрочный сплав / RU 02700347 C1 20190916/
Открыть
Описание
Изобретение относится к области металлургии, а именно к жаропрочным хромоникелевым сплавам аустенитного класса и может быть использовано при изготовлении коллекторов реакционных труб высокотемпературных установок водорода, метанола и аммиака. Жаропрочный сплав содержит, мас.%: углерод 0,05÷0,15; кремний 0,50÷1,50; марганец 0,50÷1,50; хром 19÷23; никель 30÷33; ниобий 0,70÷1,60; титан 0.005÷0,10; цирконий 0,005÷0,15; вольфрам 0,005÷0,10; лантан 0,005÷0,10; кобальт 0,0005÷0,10; молибден ≤0,10; сера ≤0,03; фосфор ≤0,03; свинец ≤0,01; олово + мышьяк + цинк + сурьма ≤0,02; азот ≤0,05; медь ≤0,1; железо – остальное. Сплав имеет структуру, состоящую из аустенитной матрицы и распределенных в ней интерметаллидов состава Cr(22÷56)Fe(4÷7)Ni и Nb(25÷35)Cr(2,5÷3,5)(FeNiTi)(0,9÷1,1) при массовом соотношении аустенитной матрицы и интерметаллидов (91÷95):(3÷8):(1÷3). Обеспечивается равномерное распределение вторичных карбидов и интерметаллидов в аустенитной матрицы. Это позволяет избежать науглероживания при пиролизе углеводородов и образование горячих трещин при сварке реакционных труб. Сплав характеризуется высокой жаропрочностью. 2 пр. Подробнее
Дата
2019-06-13
Патентообладатели
"Афанасьев Сергей Васильевич , ООО ""Реакционные трубы"" "
Авторы
Афанасьев Сергей Васильевич , Исмайлов Олег Захидович , Пыркин Александр Валерьевич
Жаропрочный сплав / RU 02700346 C1 20190916/
Открыть
Описание
Изобретение относится к металлургии, в частности к жаропрочным хромоникелевым сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 800-950°С и давлением 2,5-5 МПа и нефтегазоперерабатывающих установок с режимами эксплуатации от 950 до 1160°С и давлением до 0,7 МПа. Жаропрочный сплав содержит, мас.%: углерод 0,30÷0,50; кремний 0,8÷1,60; марганец 0,9÷1,50; хром 24,0÷27,0; никель 33.0÷36.0; ниобий 0,8÷1,90; титан 0,11÷0,25; церий >0÷0,05; лантан 0,0005÷0,10; цирконий 0,0005÷0,10; вольфрам 0,11÷0,25; алюминий 0,0005÷0,10; ванадий 0,0005÷0,20; кобальт 0,0005÷0,10; молибден 0,0005÷0,10; серу ≤0,02; фосфор ≤0,02; свинец ≤0,007; олово ≤0,006; мышьяк ≤0,006; цинк ≤0,006; сурьму ≤0,007; азот ≤0,01; медь ≤0,1; железо - остальное. Сплав имеет аустенитную структуру, состоящую из аустенитной матрицы и распределенных в ней интерметаллидов Cr(22÷52)Fe(4÷7)Ni и Nb(25÷35)Cr(2,5÷3,5)(FeNiTi)(0,9÷1,1) при массовом соотношении аустенитной матрицы и интерметаллидов (90÷95):(3÷8):(1÷3). Обеспечивается повышение однородности вторичных карбидов в структуре сплава. Сплав характеризуется высокими значениями жаропрочности. 2 пр. Подробнее
Дата
2019-06-13
Патентообладатели
"Афанасьев Сергей Васильевич , ООО ""Реакционные трубы"" "
Авторы
Афанасьев Сергей Васильевич , Исмайлов Олег Захидович , Пыркин Александр Валерьевич
НЕМАГНИТНЫЙ ЧУГУН / RU 02718849 C1 20200415/
Открыть
Описание
Изобретение относится к металлургии, в частности к немагнитным чугунам. Может использоваться в точном машиностроении и электротехнической промышленности. Немагнитный чугун содержит, мас. %: углерод 2,8-3,5; кремний 2,1-2,5; марганец 8-12; медь 0,8-1,3; алюминий 0,3-0,7; хром 0,02-0,06; РЗМ 0,02-0,05; цирконий 0,05-0,12; барий 0,02-0,06; серу 0,01-0,06; азот 0,01-0,03 и железо – остальное. Чугун обладает низким коэффициентом линейного расширения и хорошей обрабатываемостью резанием. 2 табл. Подробнее
Дата
2019-05-21
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Петербургский государственный университет путей сообщения Императора Александра I"" "
Авторы
Алов Виктор Анатольевич , Епархин Олег Модестович , Карпенко Михаил Иванович , Попков Александр Николаевич , Хомец Ульяна Сергеевна
Способ очистки сернисто-щелочных сточных вод / RU 02708602 C1 20191209/
Открыть
Описание
Изобретение может быть использовано в нефтеперерабатывающих и нефтехимических производствах. Сернисто-щелочные стоки (СЩС) подают в отпарную колонну 3, работающую в режиме ректификации, для испарения аммиака, части сероводорода и воды, которые отводят последовательно в холодильник 7 и сепаратор 8. Отпаренные СЩС из куба отпарной колонны 3 после охлаждения направляют в сатуратор 12, работающий при давлении до 6,0 атм изб., куда также подают газообразный СО2 при соотношении СО2 : СЩС, равном 0÷15 нм3 : 1 м3. Карбонизированные СЩС подают в колонну десорбции 13, работающую в режиме ректификационной колонны при давлении 0,2÷1,0 атм. изб. В кубовую часть колонны десорбции 13 подают СО2 с соотношением СО2 : СЩС, равном 5÷20 нм3 : 1 м3. В колонне десорбции 13 имеется рецикл кубовой части с узлом смешения циркулирующих СЩС с СО2 в устройстве смешения 30. Газообразные продукты из колонны десорбции 13 направляют последовательно в холодильник 16, сепаратор 17, а затем направляют на производство элементарной серы. Часть кубового продукта колонны десорбции 13 направляют через рекуперативный теплообменник в колонну отдувки/отпарки 19. Газообразные продукты колонны отдувки/отпарки 19 отводят последовательно в холодильник 25 и сепаратор 26. Образующийся конденсат возвращают на верхнюю тарелку колонны отдувки/отпарки 19 в качестве циркуляционного орошения. Предложенное изобретение позволяет осуществлять глубокую очистку СЩС методом отпарки и комплексной карбонизации газообразным СО2 до остаточного содержания азота аммонийного не более 10 мг/дм3, сульфидов до значения не более 10 мг/дм3 и рН 6,9-9, при исходном содержании азота аммонийного до 10000 мг/дм3, сульфидов до 20000 мг/дм3 и рН не более 13,5. 1 ил.,1 табл. Подробнее
Дата
2019-04-29
Патентообладатели
"Общество с ограниченной ответственностью ""ХАММЕЛЬ"" "
Авторы
Будник Владимир Александрович , Смаков Марат Ринатович , Кондратьев Александр Сергеевич , Бобровский Роман Игоревич
Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля / RU 02696625 C1 20190806/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству безуглеродистых литейных жаропрочных сплавов на основе никеля, и может быть использовано при производстве заготовок для литья изделий, преимущественно монокристаллических рабочих лопаток газотурбинных двигателей. Способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе включает расплавление состоящей из отходов металлошихты, высокотемпературное рафинирование расплава в вакууме при температуре 1500-1700°С, введение кальция и по меньшей мере одного редкоземельного металла. Высокотемпературное рафинирование проводят в течение от 10 до 20 мин, кальций и по меньшей мере один редкоземельный металл вводят в две стадии, на первой из которых в расплав вводят кальций в количестве 0,025-0,10% от массы металлошихты под давлением инертного газа 40-100 мм рт.ст., создают вакуум и вводят по меньшей мере один редкоземельный металл в количестве 0,001-0,05% от массы металлошихты. На второй стадии под вакуумом в расплав последовательно вводят кальций в количестве 0,005-0,02% от массы металлошихты и по меньшей мере один редкоземельный металл в количестве 0,06-0,50% от массы металлошихты. Обеспечивается повышение жаропрочности получаемого сплава за счет снижения содержания вредных примесей кислорода, азота и серы. 3 з.п. ф-лы, 2 табл., 3 пр. Подробнее
Дата
2019-04-18
Патентообладатели
"Федеральное государственное унитарное предприятие ""Всероссийский научно-исследовательский институт авиационных материалов"" "
Авторы
Каблов Евгений Николаевич , Сидоров Виктор Васильевич , Горюнов Александр Валерьевич
Способ очистки сернисто-щелочных сточных вод / RU 02708005 C1 20191203/
Открыть
Описание
Изобретение может быть использовано в нефтеперерабатывающих и нефтехимических производствах. Сернисто-щелочные стоки (СЩС) подают в среднюю часть отпарной колонны 3, в которой происходит испарение аммиака, части сероводорода, а также воды, которые отводят с верхней части отпарной колонны 3 последовательно в холодильник 7 и сепаратор 8. Конденсат из сепаратора 8 возвращают на верхнюю тарелку отпарной колонны 3 в качестве циркуляционного орошения, обеспечивая ее работу в режиме ректификационной колонны. Отпаренные СЩС из куба отпарной колонны 3 направляют в рекуперативный теплообменник 2, а затем охлаждают до температуры 25÷35°С в водяном холодильнике 10 и направляют в сатуратор 12 работающий при давлении до 4,5 атм, куда также подают газообразный СО2 при соотношении СО2 : СЩС, равном 5÷15 нм3 : 1 м3. Карбонизированные СЩС подают в колонну десорбции 13, работающую при давлении 1-1,2 атм, где происходит десорбция образующегося H2S. В среднюю и нижнюю часть колонны десорбции осуществляют подачу СО2 с соотношением СО2 : СЩС, равным 5÷15 нм3 : 1 м3, при этом общий расход СО2 определяется соотношением с СЩС в диапазоне значений 10÷30 нм3 : 1 м3 и зависит от степени загрязненности СЩС сульфидами. Подогрев кубовой части колонны десорбции 13 осуществляют до температуры не более 60°С за счет естественной теплопередачи через глухую перегородку, отделяющую нижнюю часть колонны десорбции 13 от верхней части отпарной колонны 3. Газообразные продукты отводят с верхней части колонны десорбции 13 и направляют последовательно в холодильник 16 и сепаратор 17, где происходит конденсация паров воды с частичным растворением в ней H2S, а также отделение образующегося конденсата от газообразных продуктов. Конденсат из сепаратора 17 подают на верхнюю тарелку колонны десорбции 13 в качестве циркуляционного орошения, обеспечивая ее работу в режиме ректификационной колонны. Газообразные продукты из сепаратора 17, содержащие преимущественно H2S, отводят для последующей переработки на установке ПЭС (производство элементарной серы). Предложенное изобретение позволяет осуществить глубокую очистку СЩС методом отпарки и комплексной карбонизации газообразным СО2 до остаточного содержания азота аммонийного не более 10 мг/дм3, сульфидов до значения не более 10 мг/дм3 и рН в диапазоне 6,9-9 ед., при исходном содержании азота аммонийного до 10000 мг/дм3, сульфидов до 20000 мг/дм3 и рН не более 13,5 ед. 1 табл., 1 ил. Подробнее
Дата
2019-04-01
Патентообладатели
"Общество с ограниченной ответственностью ""ХАММЕЛЬ"" "
Авторы
Будник Владимир Александрович , Смаков Марат Ринатович , Кондратьев Александр Сергеевич , Бобровский Роман Игоревич
Способ выращивания маточных корнеплодов сахарной свеклы / RU 02707135 C1 20191122/
Открыть
Описание
Изобретение относится к области сельского хозяйства, в частности к семеноводству сахарной свеклы. Способ включает подготовку почвы с внесением удобрений под основную обработку, загущенный посев и некорневые подкормки комплексными удобрениями, содержащими азот, фосфор, калий, магний, серу, железо, марганец, бор, цинк, медь и молибден. При этом микроэлементы железо, марганец, цинк и медь представлены в хелатной форме. Первую подкормку в фазе развития у растений 2-3 пар настоящих листьев проводят при соотношении компонентов (мас.%): азот общий - 18,0-22,0; фосфор (в пересчете на P2O5) - 8,0-12,0; калий (в пересчете на K2O) - 8,0-12,0; магний (в пересчете на MgO) - 1,5-2,5; сера - 1,0-2,0; железо - 0,8-1,2; марганец - 0,6-0,8; бор - 0,4-0,6; цинк - 0,4-0,6; медь - 0,2-0,3; молибден - 0,1-0,2. Вторую подкормку после формирования 5 пар настоящих листьев и окончания линьки корня - при соотношении компонентов (мас.%): азот общий - 8,0-12,0; фосфор (в пересчете на P2O5) - 13,0-17,0; калий (в пересчете на K2O) - 13,0-17,0; магний (в пересчете на MgO) - 1,5-2,5; сера - 1,0-2,0; железо - 0,8-1,2; марганец - 0,6-0,8; бор - 0,4-0,6; цинк - 0,4-0,6; медь - 0,2-0,3; молибден - 0,1-0,2. Третью - за три-четыре недели до уборки при соотношении компонентов (мас.%): азот общий - 4,0-6,0; фосфор (в пересчете на P2O5) - 13,0-17,0; калий (в пересчете на K2O) - 23,0-27,0; магний (в пересчете на MgO) - 1,5-2,5; сера - 1,0-2,0; железо - 0,8-1,2; марганец - 0,6-0,8; бор - 0,4-0,6; цинк - 0,4-0,6; медь - 0,2-0,3; молибден - 0,1-0,2. Способ позволяет снизить изреженность загущенных посевов маточной сахарной свеклы, повысить коэффициент выхода корнеплодов, получить здоровый и жизнеспособный посадочный материал. 2 табл. Подробнее
Дата
2019-03-06
Патентообладатели
"Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт сахарной свеклы и сахара имени А.Л. Мазлумова "
Авторы
Гаврин Денис Сергеевич , Бартенев Игорь Иванович , Путилина Людмила Николаевна
Способ очистки сернисто-щелочных сточных вод / RU 02718712 C1 20200414/
Открыть
Описание
Настоящее изобретение относится к способам очистки сернисто-щелочного технологического стока с нефтеперерабатывающего и нефтехимического производств. Способ включает подачу СЩС в среднюю часть отпарной колонны, на контактных устройствах которой за счет тепла, подводимого через выносной кипятильник, происходит испарение аммиака, части сероводорода, а также воды, которые далее отводятся с верхней части отпарной колонны последовательно в холодильник и сепаратор. Происходит конденсация паров воды и с частичным растворением в ней аммиака и сероводорода, а также отделение образующегося конденсата от газообразных продуктов. Конденсат с сепаратора возвращается на верхнюю тарелку отпарной колонны в качестве циркуляционного орошения, обеспечивая тем самым ее работу в режиме ректификационной колонны. Газообразные продукты, представляющие собой смесь аммиака и сероводорода, отводятся с установки. Отпаренный СЩС с куба отпарной колонны направляется в рекуперативный теплообменник, где охлаждается за счет подогрева входящего в отпарную колонну СЩС, дополнительно охлаждается до температуры 25÷35°С в водяном холодильнике и направляется в предварительный высокоэффективный смеситель, куда также подается газообразный CO2 при соотношении СО2 : СЩС равном 5÷15 нм3:1 м3. Полученная смесь поступает в сатуратор под повышенным давлением до 4,5 атм. В сатураторе устанавливается ионно-молекулярное равновесие, снижается рН СЩС до значений менее 7,5 ед. и образуется молекулярный H2S. Карбонизированный СЩС подается в колонну десорбции, работающую при пониженном давлении 1÷1,2 атм, на массообменных устройствах которой происходит десорбция образующегося H2S, причем для восполнения естественных потерь СО2 из раствора СЩС и сохранения интенсивности процесса карбонизации в нижнюю часть колонны десорбции осуществляется подача СО2 с соотношением СО2 : СЩС равным 5÷15 нм3:1 м3. Общий расход СО2 определяется соотношением с СЩС в диапазоне значений 10÷30 нм3:1 м3 и зависит от степени загрязненности СЩС сульфидами. Газообразные продукты, в основном состоящие из H2S, при этом отводятся с верхней части колонны десорбции и далее могут быть направлены для переработки на производство элементарной серы. Кубовый продукт, представляющий собой СЩС с остаточным содержанием сульфидов и азота аммонийного, направляется в среднюю часть колонны дополнительной отпарки, где за счет тепла, подводимого через выносной кипятильник, происходит испарение остаточных количеств NH3, СО2, H2S, а также воды, которые далее отводятся с верхней части отпарной колонны последовательно в холодильник и сепаратор. Там происходит конденсация паров воды с частичным растворением в ней NH3, СО2, H2S, а также отделение образующегося конденсата от газообразных продуктов. Конденсат с сепаратора возвращается на верхнюю тарелку дополнительной отпарной колонны в качестве циркуляционного орошения, обеспечивая тем самым ее работу в режиме ректификационной колонны. Газообразные продукты, представляющие собой смесь СО2, H2S и незначительной примеси NH3, направляются в нижнюю часть колонны десорбции с целью повторного использования СО2 в качестве карбонизирующего агента. Отпаренный кубовый продукт, представляющий собой очищенный СЩС, направляется в рекуперативный теплообменник, где охлаждается за счет подогрева входящего в отпарную колонну карбонизированного СЩС, дополнительно охлаждается в водяном холодильнике и может быть направлен на блок биологической очистки для очистки от фенолов и нефтепродуктов. Технический результат: глубокая очистка СЩС до остаточного содержания азота аммонийного не более <10 мг/дм3, сульфидов до значения не более <10 мг/дм3 и рН в диапазоне 6,9-9 ед., при исходном содержании азота аммонийного до 10000 мг/дм3, сульфидов до 20000 мг/дм3 и рН не более 13,5 ед. 1 ил., 1 табл. Подробнее
Дата
2019-03-05
Патентообладатели
"Общество с ограниченной ответственностью ""ХАММЕЛЬ"" "
Авторы
Будник Владимир Александрович , Бобровский Роман Игоревич
Способ производства литейных жаропрочных сплавов на основе никеля / RU 02696999 C1 20190808/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на основе никеля для изготовления лопаток и других деталей горячего тракта газотурбинных двигателей и установок. Способ производства литейных жаропрочных сплавов на основе никеля включает расплавление в вакууме шихтовых материалов, присадку в расплав активных легирующих и рафинирующих добавок. В качестве рафинирующих добавок в расплав последовательно вводят барий в количестве 0,001-0,10% от массы расплава и по меньшей мере один редкоземельный металл в количестве 0,01-0,50% от массы расплава. Затем после присадки активных легирующих металлов проводят рафинирование расплава в вакууме 10-1-5⋅10-3 мм рт.ст. при температуре 1600-1700°С в течение от 5 до 40 мин, во время которого расплав перемешивают, а плавильный тигель наклоняют от одного до трех раз с возвратом в первоначальное положение после каждого наклона. Повышается жаропрочность сплавов на основе никеля за счет снижения содержания серы, кислорода и азота до 0,001-0,002% каждого. 3 з.п. ф-лы, 2 табл., 7 пр. Подробнее
Дата
2019-02-20
Патентообладатели
"Федеральное государственное унитарное предприятие ""Всероссийский научно-исследовательский институт авиационных материалов"" "
Авторы
Каблов Евгений Николаевич , Сидоров Виктор Васильевич , Мин Павел Георгиевич , Вадеев Виталий Евгеньевич
Жаропрочный сплав аустенитной структуры с интерметаллидным упрочнением / RU 02693417 C1 20190702/
Открыть
Описание
Изобретение относится к металлургии, в частности к жаропрочным сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 850-950°С и давлением 2,5-5 МПа и нефтегазоперерабатывающих установок с режимами эксплуатации от 1000 до 1160°С и давлением до 0,7 МПа. Жаропрочный хромоникелевый сплав содержит, мас.%: углерод 0,35÷0,45; кремний 1,4÷2,0; марганец 0,8÷1,55; хром 34÷36; никель 43÷47; титан 0,26÷0,50; цирконий <0,1; церий 0,005÷0,10; лантан 0,005÷0,10; скандий 0,005÷0,10; кобальт 0,005÷0,10; алюминий 0,001÷0,05; сера ≤0,025; фосфор ≤0,025; свинец ≤0,007; олово ≤0,007; мышьяк ≤0,007; цинк ≤0,007; сурьма ≤0,007; азот ≤0,01; медь ≤0,2; железо - остальное. Сплав имеет структуру, состоящую из аустенитной матрицы и распределенных в ней интерметаллидов Сr(25÷60)Fe(3÷7)Ni и Nb(26÷34)Cr(2,6÷3,4)(FeNiTi)(0,9÷1,1) при массовом соотношении аустенитной матрицы и интерметаллидов (88÷94):(4÷10):(1÷3). Сплав характеризуется высокими значениями механических свойств, в том числе жаропрочности. Отсутствуют трещины при сварке труб, изготовленных из упомянутого сплава. 2 ил. Подробнее
Дата
2019-02-08
Патентообладатели
Авторы
Жаропрочный сплав аустенитной структуры с интерметаллидным упрочнением / RU 02693417 C1 20190702/
Открыть
Описание
Изобретение относится к металлургии, в частности к жаропрочным сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 850-950°С и давлением 2,5-5 МПа и нефтегазоперерабатывающих установок с режимами эксплуатации от 1000 до 1160°С и давлением до 0,7 МПа. Жаропрочный хромоникелевый сплав содержит, мас.%: углерод 0,35÷0,45; кремний 1,4÷2,0; марганец 0,8÷1,55; хром 34÷36; никель 43÷47; титан 0,26÷0,50; цирконий <0,1; церий 0,005÷0,10; лантан 0,005÷0,10; скандий 0,005÷0,10; кобальт 0,005÷0,10; алюминий 0,001÷0,05; сера ≤0,025; фосфор ≤0,025; свинец ≤0,007; олово ≤0,007; мышьяк ≤0,007; цинк ≤0,007; сурьма ≤0,007; азот ≤0,01; медь ≤0,2; железо - остальное. Сплав имеет структуру, состоящую из аустенитной матрицы и распределенных в ней интерметаллидов Сr(25÷60)Fe(3÷7)Ni и Nb(26÷34)Cr(2,6÷3,4)(FeNiTi)(0,9÷1,1) при массовом соотношении аустенитной матрицы и интерметаллидов (88÷94):(4÷10):(1÷3). Сплав характеризуется высокими значениями механических свойств, в том числе жаропрочности. Отсутствуют трещины при сварке труб, изготовленных из упомянутого сплава. 2 ил. Подробнее
Дата
2019-02-08
Патентообладатели
Афанасьев Сергей Васильевич
Авторы
Афанасьев Сергей Васильевич , Исмайлов Олег Захидович , Пыркин Александр Валерьевич
Жаропрочный сплав аустенитной структуры с интерметаллидным упрочнением / RU 02693417 C1 20190702/
Открыть
Описание
Изобретение относится к металлургии, в частности к жаропрочным сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 850-950°С и давлением 2,5-5 МПа и нефтегазоперерабатывающих установок с режимами эксплуатации от 1000 до 1160°С и давлением до 0,7 МПа. Жаропрочный хромоникелевый сплав содержит, мас.%: углерод 0,35÷0,45; кремний 1,4÷2,0; марганец 0,8÷1,55; хром 34÷36; никель 43÷47; титан 0,26÷0,50; цирконий <0,1; церий 0,005÷0,10; лантан 0,005÷0,10; скандий 0,005÷0,10; кобальт 0,005÷0,10; алюминий 0,001÷0,05; сера ≤0,025; фосфор ≤0,025; свинец ≤0,007; олово ≤0,007; мышьяк ≤0,007; цинк ≤0,007; сурьма ≤0,007; азот ≤0,01; медь ≤0,2; железо - остальное. Сплав имеет структуру, состоящую из аустенитной матрицы и распределенных в ней интерметаллидов Сr(25÷60)Fe(3÷7)Ni и Nb(26÷34)Cr(2,6÷3,4)(FeNiTi)(0,9÷1,1) при массовом соотношении аустенитной матрицы и интерметаллидов (88÷94):(4÷10):(1÷3). Сплав характеризуется высокими значениями механических свойств, в том числе жаропрочности. Отсутствуют трещины при сварке труб, изготовленных из упомянутого сплава. 2 ил. Подробнее
Дата
2019-02-08
Патентообладатели
Авторы