Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
СПОСОБ ОПРЕДЕЛЕНИЯ ИНДИВИДУАЛЬНОЙ АКТИВНОСТИ 131-ЙОДА ДЛЯ ПРОВЕДЕНИЯ РАДИОЙОДТЕРАПИИ ТИРЕОТОКСИКОЗА И ПРОГНОЗИРОВАНИЯ ВРЕМЕНИ ДОСТИЖЕНИЯ БЕЗОПАСНОГО УРОВНЯ АКТИВНОСТИ 131-ЙОДА В ОРГАНИЗМЕ ПАЦИЕНТА ПОСЛЕ ВВЕДЕНИЯ ИНДИВИДУАЛЬНОЙ АКТИВНОСТИ 131-ЙОДА / RU 02722568 C1 20200601/
Открыть
Описание
Группа изобретений относится к медицине, а именно к эндокринологии, радиологии, терапии, и может быть использована для определения индивидуальной активности 131-йода для проведения радиойодтерапии тиреотоксикоза, а также прогнозирования времени достижения безопасного уровня активности 131-йода в организме пациента после введения индивидуальной активности 131-йода. Способ определения индивидуальной активности 131-йода для проведения радиойодтерапии тиреотоксикоза включает определение объема участков (k) тироидной ткани (Vk, [мл]), удельного индекса тироидного захвата 99mTc-пертехнетата (I, [%]), распределения тироидного захвата 99mTc-пертехнетата по участкам ткани щитовидной железы (Rk, [%]), а также определение максимального и интегрального тироидного захвата 131-йода. Пациенту перорально вводят рабочий раствор объемом от 5 до 10 мл с содержанием активности (А0) 131-йода от 5 до 10 МБк. Далее на теле пациента размещают два дозиметра, выполненные с возможностью периодической регистрации мощности гамма-излучения до 2 мЗв/ч и автономной работы до 5 дней: первый - на уровне щитовидной железы, второй - на уровне мочевого пузыря. Регистрируют мощность гамма-излучения в непрерывном режиме в течение 2-5 суток, где j - номер дозиметра, p - номер зарегистрированного значения через определенный интервал времени из диапазона 2-15 минут, с сохранением зарегистрированных данных в памяти дозиметра. После чего данные значения переводят в значения активности 131-йода с получением массивов данных с последующим усреднением данных за каждый час измерений с получением массивов где i - номер часа после введения рабочего раствора. Далее определяют лечебную активность тироидной ткани : при удельном индексе тироидного захвата 99mTc-пертехнентата менее 0,5%/мл по формуле при удельном индексе тироидного захвата 99mTc-пертехнентата более 0,5%/мл - по формуле где - фактор накопления дозы, и в случае, если k=1, в качестве индивидуальной терапевтической активности 131-йода принимают минимальное значение из а в случае, если k>1, индивидуальную терапевтическую активность 131-йода определяют по формуле где MU - максимальный тироидный захват 131-йода, а UI - интегральный захват 131-йода, которые определяют по формулам: или по формулам: где - массив активности в камере «Щитовидная железа», ! полученный при обработке зарегистрированных данных массивов с применением четырехкамерной модели фармакокинетики 131-йода в организме пациента, учитывающей активности в каждый момент времени t в следующих камерах: «Тело», «Щитовидная железа», «Активность 131-йода, выведенная из тела через мочевой пузырь», «Убыль активности 131-йода в результате радиоактивного распада». Прогнозируют время достижения безопасного уровня активности 131-йода (Т) в организме пациента после введения индивидуальной активности 131-йода по формуле: ! где Ан - нормативная безопасность активности для населения, ! λэф. - постоянная эффективного выведения, определяемая аппроксимацией массива активностей в организме пациента моноэкспоненциальной функцией где является суммой активностей и активности в камере «Тело» Способ обеспечивает снижение риска возникновения рецидива тиреотоксикоза и повышает точность прогноза времени достижения безопасного уровня активности в организме пациента за счет определения индивидуальной активности 131-йода для проведения радиойодтерапии с учетом индивидуальной фармакокинетики. 2 н. и 4 з.п. ф-лы, 7 ил., 6 пр. Подробнее
Дата
2019-12-31
Патентообладатели
"ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ""НАЦИОНАЛЬНЫЙ МЕДИЦИНСКИЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ЭНДОКРИНОЛОГИИ"" МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ "
Авторы
Румянцев Павел Олегович , Трухин Алексей Андреевич , Дедов Иван Иванович , Мельниченко Галина Афанасьевна , Мокрышева Наталья Георгиевна
Способ получения сферического гидроксилапатита с регулируемым гранулометрическим составом / RU 02717064 C1 20200317/
Открыть
Описание
Изобретение может быть использовано в аддитивных технологиях для формирования импланта костной ткани. Способ получения сферических гранул гидроксилапатита с регулируемым гранулометрическим составом включает приготовление смеси, содержащей 11-15 мас.% нитрата кальция, 5-9 мас.% гидрофосфата аммония и воду – остальное. Путем добавления водного раствора гидроксида аммония доводят значение рН смеси до 10-12. Смесь выдерживают в автоклаве при давлении 150-200 атм и температуре 200-250°С в течение 1-1,5 ч. Промывают осадок до нейтрального рН. Осадок сушат в разреженной атмосфере при давлении не более 10-5 мм рт.ст. и температуре не более -55°С. Готовят суспензию, состоящую из 25-27 мас.% этилового спирта, 68-70 мас.% воды и сухого осадка – остальное. Суспензию обрабатывают ультразвуком в течение не менее 5 минут при мощности не менее 200 Вт. Проводят грануляцию с использованием распылительной сушки при температуре в рабочей камере 200-220°С и скорости подачи суспензии 13-15 мл/мин с последующим сбором сферических гранул с комплекса циклонных фильтров. Изобретение позволяет получить сферические гранулы гидроксилапатита с размером от 5 до 25 мкм. 6 ил., 2 табл., 3 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский технологический университет ""МИСиС"" "
Авторы
Чупрунов Константин Олегович , Юдин Андрей Григорьевич , Лейбо Денис Владимирович , Кузнецов Денис Валерьевич
СПОСОБ ПОЛУЧЕНИЯ КУСКОВОГО СИЛИКАГЕЛЯ / RU 02723623 C1 20200616/
Открыть
Описание
Изобретение относится к способам получения технического кускового силикагеля. Способ получения кускового силикагеля включает смешивание раствора жидкого стекла с раствором серной кислоты при 15-25°C, гелирование раствора при температуре 15-30°C в течение 20-40 часов, измельчение, отмывку и термическую обработку. Согласно способу рН раствора, полученного при смешении растворов жидкого стекла и серной кислоты, находится в диапазоне 0-4. Силикагель обрабатывают водным раствором аммиака. Изобретение обеспечивает получение кускового силикагеля, характеризующегося удельной поверхностью 200-400 м2/г, влагопоглощением более 1 см3/г и гидролитической стабильностью. 1 табл., 3 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ ""ИНЖИНИРИНГОВЫЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ЦЕНТР"" , Утаганова Альфия Радифовна "
Авторы
Князев Алексей Сергеевич , Мазов Илья Николаевич , Мамонтов Григорий Владимирович , Вышегородцева Елена Васильевна , Савельева Анна Сергеевна , Утаганова Альфия Радифовна
СПОСОБ ПОЛУЧЕНИЯ БУМАГИ / RU 02723819 C1 20200617/
Открыть
Описание
Использование: целлюлозно-бумажная промышленность. Сущность: проводят подготовку макулатурного сырья, измельчение подготовленного сырья до степени помола 36-40 ШР с получением волокнистой массы, смешивают упрочняющий агент, представляющий собой водный раствор катионного полимера, с водной дисперсией нанофибриллярной целлюлозы, имеющей дзета-потенциал от минус 36 мВ до минус 200 мВ, взятой в количестве 2,0-4,5 кг/т в расчете на сухой вес целлюлозы и макулатурного сырья. Выдерживают указанную смесь при температуре 50-60°С в течение 5-10 мин с получением флокулированного упрочняющего агента. Смешивают проклеивающий агент с водной дисперсией нанофибриллярной целлюлозы, имеющей дзета-потенциал от минус 36 мВ до минус 200 мВ, взятой в количестве 1,5-3,5 кг/т в расчете на сухой вес целлюлозы и макулатурного сырья, с получением модифицированного проклеивающего агента. Затем смешивают волокнистую массу с флокулированным упрочняющим агентом и модифицированным проклеивающим агентом с получением бумажной массы. Последнюю подвергают обезвоживанию, прессованию, сушке и каландрованию с получением целевого продукта. Достигаемый технический результат заключается в образовании комплексных флокул в бумажной массе, обеспечивающих связывание растворенного крахмала и агрегацию мелкого волокна в составе бумажной массы, а также повышающих седиментационную устойчивость упрочняющего агента, что приводит к более равномерному распределению упрочняющего агента в волокнистой массе и, как следствие, повышению однородности и механических свойств получаемой бумаги. 1 табл. Подробнее
Дата
2019-12-30
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Российский государственный университет нефти и газа имени И.М. Губкина"" "
Авторы
Винокуров Владимир Арнольдович , Гущин Павел Александрович , Иванов Евгений Владимирович , Копицын Дмитрий Сергеевич , Новиков Андрей Александрович , Горбачевский Максим Викторович , Аникушин Борис Михайлович , Константинова Светлана Алексеевна , Зуйков Александр Александрович , Лагута Евгений Алексеевич , Сухоруков Олег Геннадьевич
СПОСОБ ПОЛУНЕПРЕРЫВНОГО ЛИТЬЯ ПЛОСКИХ КРУПНОГАБАРИТНЫХ СЛИТКОВ ИЗ АЛЮМИНИЕВО-МАГНИЕВЫХ СПЛАВОВ, ЛЕГИРОВАННЫХ СКАНДИЕМ И ЦИРКОНИЕМ / RU 02723578 C1 20200616/
Открыть
Описание
Изобретение относится к области металлургии и может быть использовано при полунепрерывном литье плоских крупногабаритных слитков из алюминиево-магниевых сплавов, легированных скандием и цирконием. В основном периоде литья максимальную глубину лунки жидкого сплава в кристаллизаторе поддерживают не более величины, рассчитываемой по формуле: LЛ=(1±0,03)×[0,875×(Н-В)×В:Н], где LЛ – максимальная глубина лунки жидкого сплава, мм; Н – ширина слитка, мм; В – толщина слитка, мм; 0,875 – эмпирический коэффициент; (1±0,03) – доверительный интервал. Содержание скандия в сплаве поддерживают не более 0,15% вес. Обеспечивается улучшение механических характеристик алюминиево-магниевых сплавов после отжига за счет образования повышенного количества дисперсных алюминидов скандия и циркония в результате распада пересыщенных твердых растворов при снижении расхода скандия, повышение производительности и выхода годной продукции при последующей механической обработке отожженных слитков. 1 ил., 5 табл., 2 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"Общество с ограниченной ответственностью ""Объединенная Компания РУСАЛ Инженерно-технологический центр"" "
Авторы
Куликов Борис Петрович , Баранов Владимир Николаевич , Зенкин Евгений Юрьевич , Юрьев Павел Олегович , Безруких Александр Иннокентьевич , Степаненко Никита Андреевич
Способ выделения Ni-63 из облученной мишени и очистки его от примесей / RU 02720703 C1 20200512/
Открыть
Описание
Изобретение относится к технологии выделения и очистки препарата радионуклида 63Ni и выделения и очистки никеля из промышленных отходов. Очистка целевого радионуклида от 59Fe, 60Co, 51Cr, 54Mn, 124Sb, 46Sc, 117Sn проводится осаждением указанных примесей при рН=5-6 после изотопного разбавления неактивным кобальтом и окисления последнего персульфатом калия или натрия. Заданное значение рН поддерживают добавлением к раствору нерастворимых карбонатов кальция или бария. Техническим результатом является возможность выделения и очистки больших количеств 63Ni (десятки граммов) от примесей: 59Fe, 60Co, 51Cr, 54Mn, 124Sb, 46Sc, 117Sn, 65Zn из мишеней без внесения дополнительных загрязнений. 6 з.п. ф-лы, 3 ил., 3 табл. Подробнее
Дата
2019-12-30
Патентообладатели
Акционерное общество «Государственный научный центр-Научно-исследовательский институт атомных реакторов»
Авторы
Буткалюк Павел Сергеевич , Буткалюк Ирина Львовна , Корнилов Александр Степанович , Черноокая Евгения Валерьевна , Дитяткин Валерий Алексеевич
Форсунка металлическая напорная для автоматической подачи бентонита при бестраншейной прокладке стеклокомпозитных труб / RU 02721620 C1 20200521/
Открыть
Описание
Изобретение применяется при сооружении трубопроводов бытовой канализации, ливнестоков, промышленных и других водостоков, трубопроводов для транспортировки химических жидкостей, относится к устройству для нанесения строительного раствора, в частности к форсунке металлической напорной для автоматической подачи бентонита при бестраншейной прокладке стеклокомпозитных труб. Форсунка металлическая напорная для автоматической подачи бентонита при бестраншейной прокладке стеклокомпозитных труб состоит из корпуса, выполненного из стали, с ребрами, выполненными монолитно по его периметру, в которой установлен обратный клапан, изготовленный с выступами, гайки, выполненной из стали, установленной на один резьбовой конец корпуса с возможностью установки в отверстие в стенке трубы, произведенной со шлицами, пробки, выполненной из стали, установленной в отверстие на другом конце корпуса, выполненной со шлицом с возможностью ее ввинчивания, при этом установлен уплотнительный профиль в местах стыка с трубой и на пробке. При этом обратный клапан выполнен из полиэтилена. Техническим результатом является повышение надежности закрепления устройства в стенке трубы и обеспечение ее герметизации при прокладке напорных трубопроводов и после применения, что позволяет эффективно доставлять бентонитовый раствор на поверхность проталкиваемой стеклокомпозитной трубы, тем самым обеспечивая ее эффективное прохождение и высокие эксплуатационные характеристики. 1 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-12-27
Патентообладатели
"Общество с ограниченной ответственностью ""Новые Трубные Технологии"" "
Авторы
Иванов Сергей Викторович , Никифоров Дмитрий Николаевич , Мельников Денис Александрович
Способ получения вспененного гидрогеля кремниевой кислоты / RU 02720416 C1 20200429/
Открыть
Описание
Изобретение относится к области получения плотных вспененных структур с низкой теплопроводностью, а именно получению вспененного гидрогеля кремниевой кислоты. Описан способ получения вспененного гидрогеля кремниевой кислоты, по которому коллоидный раствор, сформированный в процессе гидролиза смеси водного раствора силиката щелочного металла и углеводородного ПАВ, подвергают фазовому золь-гель переходу путем смешения указанного коллоидного раствора с активатором гелеобразования, отличающийся тем, что смешение коллоидного раствора с активатором осуществляют в объеме смешения, затем образованный в объеме смешения гидрозоль кремниевой кислоты компрессионно подают на пеногенерирующие сетки с формированием вспененного гидрогеля кремниевой кислоты, при этом в объеме смешения процесс осуществляют при объемном соотношении коллоидный раствор:активатор как 1:(30-100), при температуре активации от минус 20 до 0°С или от +50 до +110°С, в качестве активатора используют газообразный оксид неметалла, для процесса смешения в объеме и коллоидный раствор, и газообразный активатор подают компрессионно при давлении 3-10 атм, а в качестве источника газа используют баллон со сжатым газом или твердотопливный газогенератор. Технический результат – улучшение характеристик получаемого вспененного гидрогеля кремниевой кислоты. 7 з.п. ф-лы, 2 ил., 3 табл., 8 пр. Подробнее
Дата
2019-12-27
Патентообладатели
"Общество с ограниченной ответственностью ""Техно"" , Общество с ограниченной ответственностью ""ИННОКОЛЛОИД"" "
Авторы
Баев Сергей Николаевич , Виноградов Александр Валентинович , Виноградов Владимир Валентинович , Демидов Владимир Геннадьевич , Колчин Вадим Владимирович , Тукмачев Павел Сергеевич , Филатов Сергей Геннадьевич , Чащина Елена Павловна
Способ идентификации наркотических и психоактивных веществ в биосубстрате человека / RU 02723907 C1 20200618/
Открыть
Описание
Изобретение относится к хроматографическому анализу химических соединений и может быть использовано для идентификации и выявления наркотических и психоактивных веществ в биосубстрате человека. Способ идентификации наркотических и психоактивных веществ в биологических объектах, в котором образец биосубстрата человека в виде органа или фрагмента мышечной ткани измельчают до состояния гомогената и осуществляют его хромато-спектрометрическое исследование с регистрацией сигнала масс-спектрометра в виде профиля пиков анализируемых веществ на хроматограмме с последующим определением принадлежности каждого пика анализируемому веществу и сравнением с эталонными аналитическими характеристиками искомого вещества, при этом образец биосубстрата человека в виде гомогената перед хромато-спектрометрическим исследованием подвергают щелочному гидролизу и экстрагируют неполярным растворителем из щелочной среды для обеспечения оптимального соотношения сигнал/шум для целевых аналитов, затем полученный экстракт упаривают и при образовании вязкого маслянистого осадка его реэкстрагируют водным кислым раствором и далее целевые вещества извлекают из полученного водного раствора неполярным растворителем при щелочных значениях рН, а хромато-спектрометрическое исследование проводят в режиме регистрации SIM-спектров, причем набор ионов для SIM-регистрации выбирают из условия выбора всех фрагментов масс-спектра с интенсивностью более 1%. Техническим результатом является расширение арсенала технических средств для идентификации наркотических и психоактивных веществ в организме человека и повышение чувствительности и точности определения целевых аналитов. 1 ил. Подробнее
Дата
2019-12-27
Патентообладатели
Савчук Сергей Александрович
Авторы
Савчук Сергей Александрович , Новиков Андрей Петрович , Буряк Алексей Константинович , Шаборшин Николай Юрьевич
Газоанализатор диоксида азота / RU 02724290 C1 20200622/
Открыть
Описание
Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей диоксида азота. Сущность изобретения: полупроводниковый датчик диоксида азота, содержащий полупроводниковое основание, нанесенное на непроводящую подложку, отличающийся тем, что полупроводниковое основание выполнено из поликристаллической пленки твердого раствора состава (InAs)0,015(ZnS)0,985. Технический результат изобретения - повышение чувствительности и технологичности изготовления датчика. 2 ил., 1 табл. Подробнее
Дата
2019-12-27
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Омский государственный технический университет"" "
Авторы
Кировская Ираида Алексеевна , Эккерт Алиса Олеговна , Эккерт Роберт Владимирович , Миронова Елена Валерьевна , Уманский Илья Юрьевич
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГИДРИРОВАНИЯ ФУРФУРОЛА И ФУРФУРИЛОВОГО СПИРТА ДО 2-МЕТИЛФУРАНА / RU 02722837 C1 20200604/
Открыть
Описание
Изобретение относится к области разработки способов приготовления катализаторов селективного гидрирования фурфурола и/или фурфурилового спирта для получения 2-метилфурана. Описан способ приготовления катализатора гидрирования фурфурола и/или фурфурилового спирта, включающий смешение молибдата аммония, нитрата никеля, лимонной кислоты и дистиллированной воды. При этом смешение проводят при нагреве до 100°С до полного растворения компонентов с обеспечением мольного соотношения Ni/Mo от 0,1 до 0,5, мольное соотношение молибдена и никеля к количеству углерода в лимонной кислоте равно 1:1, полученным пропиточным раствором по влагоемкости пропитывают углеродный носитель - Сибунит, который затем сушат на воздухе при 100°С и прокаливают в токе Ar при 400°С, полученный композит охлаждают в токе Ar, восстанавливают при 600°С в токе водорода, повторно охлаждают и пассивируют 1% О2 в аргоне при комнатной температуре. Технический результат заключается в повышении активности и селективности катализатора и обеспечении получения 2-метилфурана с выходом свыше 90% при селективном гидрировании фурфурола и/или фурфурилового спирта. 2 ил., 3 табл., 7 пр. Подробнее
Дата
2019-12-27
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Новосибирский национальный исследовательский государственный университет"" "
Авторы
Яковлев Вадим Анатольевич , Смирнов Андрей Анатольевич , Шилов Иван Николаевич
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВОЙ ДОБАВКИ ПУТЕМ ГИДРИРОВАНИЯ ФУРФУРОЛА И ФУРФУРИЛОВОГО СПИРТА / RU 02723548 C1 20200616/
Открыть
Описание
Изобретение относится к способу получения 2-метилфурана путем селективного гидрирования фурановых производных - фурфурола и/или фурфурилового спирта. Способ заключается в гидрировании фурфурола и/или фурфурилового спирта в присутствии катализатора, содержащего 15 мас.% карбида молибдена, модифицированного металлическим никелем с мольным соотношением Ni/Mo от 0,1 до 0,5, остальное - углеродный носитель типа Сибунит, гидрирование проводят на установке периодического действия при температуре 150°С, давлении водорода 6,0 МПа, скорости перемешивания 1800 об/мин, времени реакции 4 ч с использованием раствора с объемным содержанием фурфурола или фурфурилового спирта в изопропаноле 3,5 об.% или на установке проточного типа в отсутствие растворителя при температуре 160-200°С, давлении водорода 5,0 МПа, скорости подачи сырья 3-6 мл/ч и объемной скорости водорода 300-600 мл/мин в присутствии указанного катализатора. Технический результат – разработан новый способ получения 2-метилфурана с высоким выходом при селективном гидрировании фурфурола и/или фурфурилового спирта. Полученный 2-метилфуран может быть использован для повышения октанового числа бензина. 1 з.п. ф-лы, 2 ил., 7 табл., 10 пр. Подробнее
Дата
2019-12-27
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Новосибирский национальный исследовательский государственный университет"" "
Авторы
Яковлев Вадим Анатольевич , Смирнов Андрей Анатольевич , Шилов Иван Николаевич
СПОСОБ МОДИФИКАЦИИ МЕМБРАН ДЛЯ УЛЬТРАФИЛЬТРАЦИИ ВОДНЫХ СРЕД / RU 02719165 C1 20200417/
Открыть
Описание
Изобретение относится к мембранной технологии и может найти применение для очистки и разделения воды и водных растворов в пищевой, фармацевтической, нефтехимической и других отраслях промышленности, при водоподготовке и создании особо чистых растворов. Способ модификации мембран для ультрафильтрации водных сред заключается в том, что предварительно определяют порог отсечения исходной мембраны и с учетом характеристик отделяемых загрязнителей и материала, из которого выполнена исходная мембрана, задают требуемый порог отсечения, затем в зависимости от характеристик исходной мембраны осуществляют выбор модификатора из анизотропных дисперсных материалов, выбранных из группы: нанофибриллярная целлюлоза, нанотрубки галлуазита, нанокристаллическая целлюлоза с размером частиц, соответствующих достижению заданного порога отсечения, причем выбранный модификатор подвергают химической обработке до получения значения дзета-потенциала, соответствующего заданному порогу отсечения, при этом в случае использования в качестве модификатора нанофибриллярной целлюлозы водную дисперсию нанофибриллярной целлюлозы смешивают с серной кислотой до достижения ее концентрации 20-65 мас.% и пероксидом водорода до достижения его концентрации 0,1-10,0 мас.% с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанофибриллярной целлюлозы от минус 36 до минус 200 мВ, в случае использования в качестве модификатора нанотрубок галлуазита водную дисперсию галлуазита смешивают с водным раствором полимера с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанотрубок галлуазита от минус 36 до минус 200 мВ, в случае использования в качестве модификатора нанокристаллической целлюлозы водную дисперсию нанокристаллической целлюлозы смешивают с серной кислотой до достижения ее концентрации 20-80 мас.% и пероксида водорода до достижения его концентрации 0,1-10,0 мас.% с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанокристаллической целлюлозы от минус 36 до минус 200 мВ, после чего исходную мембрану помещают в водную среду и проводят гидрофилизацию исходной мембраны путем подачи на ее рабочую поверхность дисперсии выбранного и обработанного одним из соответствующих вышеуказанных способов модификатора с образованием гидрофильного слоя на рабочей поверхности мембраны в процессе фильтрации дисперсии модификатора сквозь стенку мембраны. Достигаемый технический результат заключается в обеспечении формирования в ходе модификации мембраны гидрофильного разделительного слоя на рабочей поверхности мембраны с регулируемыми удельным зарядом и ориентацией анизотропных дисперсных частиц модификатора, что обеспечивает высокие барьерные свойства образующегося при самосборке заряженных частиц модификатора гидрофильного разделительного слоя. 2 ил., 7 пр. Подробнее
Дата
2019-12-26
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Российский государственный университет нефти и газа имени И.М. Губкина"" "
Авторы
Винокуров Владимир Арнольдович , Гущин Павел Александрович , Иванов Евгений Владимирович , Новиков Андрей Александрович , Анохина Татьяна Сергеевна , Волков Алексей Владимирович , Борисов Илья Леонидович , Василевский Владимир Павлович , Петрова Дарья Андреевна
Способ получения удобрения на основе пироугля, содержащего микроэлемент иод, и удобрение, полученное указанным способом / RU 02720913 C1 20200514/
Открыть
Описание
Изобретения относятся к сельскому хозяйству. Способ получения удобрения на основе пироугля заключается в том, что берут 10 мг иодида калия, растворяют в 100 мл дистиллированной воды, берут кремнезоль с массовой концентрацией диоксида кремния 39-41% и размером мицелл не более 6 нм, смешивают с водой в соотношении 1 часть кремнезоля к 3 частям воды, смешивают 100 мл раствора иодида калия и 400 мл раствора кремнезоля, берут 1 кг пироугля и добавляют 500 мл полученного водного раствора иодида калия и кремнезоля, далее пироуголь гранулируют, далее гранулы пироугля выдерживают при температуре 35°С в течение 4-х часов. Удобрение на основе пироугля с кремнезолем, размер мицелл которого не превышает 6 нм, которое содержит микроэлемент иод в концентрации 7,5 мкг/г по отношению к пироуглю. Изобретения позволяют повысить содержание микроэлемента иода в почве и в растениях, а также повысить качество зерна. 2 н.п. ф-лы, 4 ил., 6 пр. Подробнее
Дата
2019-12-25
Патентообладатели
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский федеральный университет"
Авторы
Селивановская Светлана Юрьевна , Галицкая Полина Юрьевна , Курынцева Полина Александровна , Рудакова Майя Анатольевна , Гордеев Александр Сергеевич , Канунников Кирилл Борисович
Способ получения снеков из свеклы / RU 02724673 C1 20200625/
Открыть
Описание
Изобретение относится к пищевой промышленности, может быть использовано на консервных и овощесушильных предприятиях и в общественном питании. Способ получения снеков из столовой свеклы включает мойку исходного сырья, отделение кожицы и резку его на ломтики. При этом мойку корнеплодов столовой свеклы и отделение кожицы осуществляют одновременно в моечно-очистительной машине. Исходное сырье инспектируют и режут на ломтики толщиной 2,5-3,0 мм, очищенную и нарезанную ломтиками столовую свеклу варят 30-40 минут в 1-2%-ном растворе инвертного сиропа при рН 5,0-6,0. Далее сушат при температуре 70-120°С до массовой доли влаги 5,5-7%. Изобретение позволяет повысить качество, пищевую и биологическую ценность готовых изделий за счет содержания в них пищевых волокон, минеральных веществ и микроэлементов, а также увеличения срока хранения продукта. 1 табл., 3 пр. Подробнее
Дата
2019-12-24
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Астраханский государственный технический университет"", ФГБОУ ВО ""АГТУ"" "
Авторы
Золотокопова Светлана Васильевна , Лебедева Екатерина Юрьевна , Золотокопов Андрей Владимирович , Павликова Розалина Павловна
СПОСОБ ИЗВЛЕЧЕНИЯ НИОБИЯ ИЗ КЕКОВ ОТ ВЫЩЕЛАЧИВАНИЯ КОМПЛЕКСНОГО РЕДКОМЕТАЛЛЬНОГО СЫРЬЯ СЛОЖНОГО СОСТАВА / RU 02717421 C1 20200323/
Открыть
Описание
Изобретение относится к технологии гидрометаллургической переработки комплексного редкометалльного сырья сложного состава. Ниобий извлекают из ниобийсодержащих кеков от выщелачивания комплексного редкометалльного сырья. Смешивают кек со смесью водных растворов плавиковой и серной кислот в концентрациях 80-90 г/л и 800-980 г/л соответственно и 50%-ным по объему раствором трибутилфосфата в октане при массовом соотношении твердой фазы и жидкой фазы, равном 1:(3-9), и объемном соотношении жидкой водной фазы и жидкой органической фазы, равном (2-3):(1-2), с получением пульпы. Интенсивно перемешивают пульпу при температуре 20-25°С и времени контакта фаз 5-10 мин. Декантируют пульпу в течение 15-25 мин, затем отделяют жидкую органическую фазу от жидкой водной фазы и твердой фазы фильтрацией. Способ обеспечивает высокую степень извлечения ниобия из комплексного редкометалльного сырья в органическую фазу и его концентрирование при невысоких температурных, временных и расходных параметрах процесса. 3 пр. Подробнее
Дата
2019-12-20
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""МИРЭА - Российский технологический университет"" "
Авторы
Пермякова Наталия Анатольевна , Цыганкова Мария Викторовна , Лысакова Елена Иосифовна
Способ получения наноструктурного оксида кобальта на углеродном носителе / RU 02723558 C1 20200616/
Открыть
Описание
Изобретение может быть использовано для приготовления активной массы электрода с частицами оксида кобальта на углеродном носителе, используемого в химических источниках тока, суперконденсаторах, в качестве носителя для катализаторов реакций, протекающих в топливных элементах. Получение наноструктурного оксида кобальта СоО на углеродном носителе проводят в электрохимической ячейке с объединенным катодным и анодным пространством, заполненной водным электролитом, под действием постоянного электрического тока. На металлический катод в виде пластины, расположенный на дне электрохимической ячейки, помещают слой углеродной суспензии следующего состава, мас.%: N-метилпирролидон – 73, поливинилиденфторид – 2,6, углерод –24,4. Наливают на полученный слой углеродной суспензии водный раствор электролита, имеющего состав CoSO4·7H2O 100-500 г/л, NaCl 20 г/л, Н3ВО3 45 г/л или CoSO4 100-500 г/л, NaCl 20 г/л, Н3ВО3 45 г/л. Электроосаждение кобальта на углеродный носитель проводят при плотности тока 0,5-1,6 А/см2 относительно площади металлического катода при перемешивании углеродной суспензии с помощью магнитной мешалки. Изобретение позволяет получить частицы оксида кобальта на углеродном носителе с размером кристаллитов 2-50 нм при их равномерном распределении по поверхности углеродного носителя. 2 з.п. ф-лы, 3 ил., 2 табл., 10 пр. Подробнее
Дата
2019-12-20
Патентообладатели
Федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет»
Авторы
Мауэр Дмитрий Константинович , Новомлинский Иван Николаевич , Скибина Лилия Михайловна
ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ЛЕЧЕНИЯ ЗАБОЛЕВАНИЙ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ / RU 02723484 C1 20200611/
Открыть
Описание
Настоящее изобретение относится к области медицины, а именно к фармацевтической композиции для парентерального капельного введения, предназначенной для лечения заболеваний сердечно-сосудистой системы, которая характеризуется тем, что содержит комплекс активных веществ, при следующем соотношении компонентов: тиаминпирофосфат 50 мг; аденозинтрифосфат динатрия гидрат 20 мг; полиенилфосфатидилхолин 1250-2500 мг; фосфатидилсерин 200-400 мг; моноаммоний глицирризинат (в пересчете на глицирризиновую кислоту) 13,25 (10) мг; L-карнитин 250 мг; L-аргинин гидрохлорид 100 мг; L-цитруллин 100 мг; L-орнитин 100 мг; инозин 200 мг; никотинамидадениндинуклеотидфосфат 100 мг; декспантенол 100 мг; убидекаренон 25 мг; экстракт Гингко Билоба 17,5 мг; магния сульфат гидрат 1,23 г; аскорбиновая кислота 1000-2000 мг; 8% водный раствор бензилового спирта 50 мл; дистиллированная вода до 500 мл. Настоящее изобретение обеспечивает расширение арсенала средств указанного назначения за счет создания высокоэффективной фармацевтической композиции для парентерального капельного введения, которая может быть использована для лечения заболеваний сердечно-сосудистой системы. 3 пр. Подробнее
Дата
2019-12-18
Патентообладатели
"Общество с ограниченной ответственностью ""Ай Кью Витаминная студия"" "
Авторы
Сисев Виктор Александрович
Хромсодержащий катализатор жидкофазного синтеза метанола и способ его получения / RU 02721547 C1 20200520/
Открыть
Описание
Изобретение относится к химической промышленности, а именно к производству гетерогенных катализаторов процесса жидкофазного синтеза метанола, и может быть применено на предприятиях химической промышленности для получения метанола, который используется в качестве растворителя, экстрагента и сырья для синтеза формальдегида, сложных эфиров органических и неорганических кислот и добавок к топливу. Хромсодержащий катализатор жидкофазного синтеза метанола содержит сверхсшитый полистирол в качестве носителя и активный металл. Согласно изобретению в качестве активного металла используется хром, при этом содержание хрома в катализаторе составляет от 4 до 6 мас.%, а содержание сверхсшитого полистирола - 94÷96 мас.%. Используют сверхсшитый полистирол с площадью внутренней поверхности 950÷1050 м2/г. Способ получения хромсодержащего катализатора жидкофазного синтеза метанола включает обработку сверхсшитого полистирола раствором соли активного металла в тетрагидрофуране, дистиллированной воде и метаноле, приготовленном под током азота, высушивание, продувку азотом с расходом 30±5 мл/мин в течение 30±5 мин, продувку водородом с расходом 30±5 мл/мин в течение 30±5 мин, восстановление водородом, охлаждение до комнатной температуры и продувку азотом с расходом 30±5 мл/мин в течение 30±5 мин. Согласно изобретению в качестве раствора соли активного металла используют раствор ацетата хрома концентрацией 3,6÷3,7 мас.%, обработку носителя раствором ацетата хрома осуществляют сначала смешиванием в течение 10±0,5 мин, далее - с использованием ультразвука с частотой 60±0,5 кГц, мощностью 75±1 Вт в течение 2±0,1 мин, высушивание проводится при 105±5°C в течение 1±0,1 ч, а восстановление водородом проводится при 350±10°С с расходом 10±1 мл/мин в течение 3±0,1 ч. Технический результат изобретения – повышение активности, селективности и операционной стабильности гетерогенного катализатора в реакции жидкофазного синтеза метанола. 2 н. и 1 з.п. ф-лы, 26 пр. Подробнее
Дата
2019-12-18
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Тверской государственный университет"" "
Авторы
Тихонов Борис Борисович , Матвеева Валентина Геннадьевна , Косивцов Юрий Юрьевич , Манаенков Олег Викторович , Григорьев Максим Евгеньевич , Долуда Валентин Юрьевич
Способ модификации (варианты) ориентированных ПВС-волокон и способ получения карбонизованных волокон (варианты) с использованием модифицированных ПВС-волокон в качестве предшественника / RU 02722507 C1 20200601/
Открыть
Описание
Изобретение относится к технологии производства карбонизированных волокон с использованием модифицированного поливинилспиртового (ПВС) волокна. Способы модификации ориентированных ПВС-волокон бисульфатом калия включают следующие стадии. Нанесение бисульфата калия на поверхность ПВС волокна, высушивание ПВС-волокна до выпадения кристаллов бисульфата калия на поверхности волокна, термообработку, предварительную термостабилизацию модифицированных ПВС-волокон в газовой среде при 350-600°С. Нанесение бисульфата калия на ПВС-волокна включает: смачивание ПВС-волокна раствором бисульфата калия, высушивание до осаждения кристаллов на поверхности волокна. Способы карбонизации с использованием модифицированных ПВС-волокон в качестве предшественника включают следующие стадии. Модификация ориентированных ПВС-волокон, включающая термообработку и предварительную термостабилизацию, и карбонизация ПВС-волокон при 1000-1500°С. Обеспечивается ускорение процесса физического соединения бисульфата калия и ПВС-волокна, что позволяет объединить все этапы производства карбонизированного волокна в единый технологический процесс. 4 н. и 4 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-12-17
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук .
Авторы
Куркин Тихон Сергеевич , Зеленецкий Александр Николаевич , Петкиева Диана Викторовна , Озерин Александр Никифорович , Голубев Евгений Константинович