Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы / RU 02722753 C1 20200603/
Открыть
Описание
Изобретение относится к электрохимическому способу получения микродисперсных порошков гексаборидов металлов лантаноидной группы. Способ включает синтез гексаборидов лантаноидов из хлоридсодержащего расплава, содержащего ионы бора и ионы лантаноида. В качестве хлоридсодержащего расплава используют расплав состава (CaCl2 – CaO) с добавками оксида бора B2O3 и оксида получаемого лантаноида Ln2O3. В процессе электролиза концентрации B2O3 и Ln2O3 поддерживают постоянными в количествах, обеспечивающих атомное соотношение бора к лантаноиду B/Ln = 6 при их суммарной концентрации в расплаве 5-10 мас.% от массы электролита. Синтез осуществляют в атмосфере воздуха в интервале температур 800-850°С, при катодной плотности тока 0,3-0,5 А/см2. Предложенный способ позволяет получить порошки гексаборидов лантаноидов с выходом по затраченному току электролиза (КПД) до 82% при упрощении и удешевлении технологии получения и стоимости целевого продукта. 7 ил., 7 пр. Подробнее
Дата
2019-12-25
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук
Авторы
Филатов Евгений Сергеевич , Чернов Яков Борисович , Шуров Николай Иванович , Чухванцев Денис Олегович , Роженцев Данил Александрович
ШИХТА И ЭЛЕКТРОПЕЧНОЙ АЛЮМИНОТЕРМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ФЕРРОБОРА С ЕЕ ИСПОЛЬЗОВАНИЕМ / RU 02719828 C1 20200423/
Открыть
Описание
Изобретение относится к металлургии и может быть использовано для получения ферробора электропечным алюминотермическим способом в наклоняющемся горне с периклазовой футеровкой. Предложена шихта при следующем соотношении компонентов, мас. %: кислота борная 21,4-23,0, ангидрид борный 12,8-13,2, окалина железная 18,9-19,0, окалина искусственная 11,5-12,1, порошок алюминия первичного 22,2-22,5, известь обожженная 9,8-10,8, концентрат плавиковошпатовый 0,43-0,46 и соль поваренная выварочная 0,86-0,92. Изобретение позволяет найти оптимальные соотношения по массе между компонентами шихты с обеспечением ее нормальной термичности, получить ферробор с низким содержанием фосфора, меди, кремния и углерода, а также обеспечить высокое извлечение бора в сплав. 2 н.п. ф-лы, 1 табл., 3 пр. Подробнее
Дата
2019-12-23
Патентообладатели
"Публичное акционерное общество ""Ключевский завод ферросплавов"" "
Авторы
Гильварг Сергей Игоревич , Кузьмин Николай Владимирович , Мальцев Юрий Борисович
Способ получения наноструктурного композиционного материала на основе алюминия / RU 02716930 C1 20200317/
Открыть
Описание
Изобретение относится к порошковой металлургии, в частности, к получению наноструктурного композиционного материала на основе алюминия, модифицированного фуллереном С60. Может использоваться в машиностроении и авиакосмической отрасли. Смесь стружки сплава алюминия, содержащего 6 вес.% магния, и порошка фуллерена С60 в количестве 0,1÷0,5 вес. % подвергают обработке в планетарной шаровой мельнице в течение 45 мин при скорости вращения 1800 об/мин. Полученную порошковую смесь прессуют при 550 мм в заготовку диаметром 50 мм и подвергают прямой горячей экструзии со степенью деформации 6,2 при давлении 1-1,5 ГПа и температуре 280°С. Обеспечивается увеличение механических свойств при сохранении плотности на уровне исходного матричного сплава. 3 ил., 3 табл., 2 пр. Подробнее
Дата
2019-12-17
Патентообладатели
"Федеральное государственное бюджетное научное учреждение ""Технологический институт сверхтвердых и новых углеродных материалов"" "
Авторы
Баграмов Рустэм Хамитович , Евдокимов Иван Андреевич , Грязнова Марина Игоревна , Ломакин Роман Леонидович , Перфилов Сергей Алексеевич , Поздняков Андрей Анатольевич
Способ получения наноструктурного композиционного материала на основе алюминия / RU 02716965 C1 20200317/
Открыть
Описание
Изобретение относится к порошковой металлургии, в частности, к получению наноструктурного композиционного материала на основе алюминия. Может использоваться в условиях переменных и ударных нагрузок, таких как высоконагруженные элементы конструкций, испытывающих значительную вибрацию и/или ударные воздействия. Смесь из порошка алюминия размером 20÷200 мкм, порошка магния размером 20÷200 мкм в количестве 3-9 вес.% и порошка фуллерена С60 размером менее 200 мкм в количестве 0,3 вес.% загружают в планетарную мельницу в атмосфере аргона, обрабатывают при скорости вращения ≈800 об/мин в течение 20 минут. Заготовку прессуют в атмосфере аргона при давлении 0,2 ГПа и обрабатывают в атмосфере аргона при 150°С в течение 60 минут. Горячее прессование проводят при давлении 1,2 ГПа и температуре 350°С в течение 5 минут, затем обрабатывают при 180°С в течение 72 часов в атмосфере аргона и охлаждают до комнатной температуры в течение 3 часов. Обеспечивается повышение пластичности, твердости и пределов прочности на растяжение и изгиб. 3 пр. Подробнее
Дата
2019-12-17
Патентообладатели
"Федеральное государственное бюджетное научное учреждение ""Технологический институт сверхтвердых и новых углеродных материалов"" "
Авторы
Баграмов Рустэм Хамитович , Евдокимов Иван Андреевич
Способ получения порошка простого или сложного оксида металла / RU 02723166 C1 20200609/
Открыть
Описание
Изобретение относится к области химических технологий и может быть использовано для получения порошков простых и сложных оксидов металлов для производства термобарьерных покрытий и спецкерамики. Способ получения порошка простого или сложного оксида металла включает получение исходного раствора нитрата по меньшей мере одного соответствующего металла, хелатообразующего восстановителя и замедлителя горения, нагревание смеси до температуры самораспространяющегося высокотемпературного синтеза (СВС), выдержку до завершения горения с последующим отжигом, при этом для получения стабилизированного оксидом иттрия оксида циркония YSZ-5 используют нитраты циркония и иттрия и глицин в качестве восстановителя в стехиометрическом соотношении, а для получения оксида алюминия Al2O3 - нитрат алюминия и восстановитель - карбамид в соотношении, на 10% превышающем стехиометрию, причем в качестве замедлителя горения используют по меньшей мере один оксид соответствующего металла в количестве 50÷70 масс. % от расчетной массы конечного продукта. Изобретение обеспечивает повышение крупности частиц получаемого продукта, а также возможность масштабирования за счет уменьшения объема получаемого продукта и предотвращения выброса материала за пределы реактора. 4 пр. Подробнее
Дата
2019-12-13
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Авторы
Журавлев Виктор Дмитриевич , Ермакова Лариса Валерьевна , Халиуллин Шамиль Минулович , Патрушева Татьяна Александровна
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ НИКЕЛЯ И НЕМЕТАЛЛИЧЕСКОГО ПОРОШКА / RU 02718825 C1 20200414/
Открыть
Описание
Изобретение относится к порошковой металлургии, в частности к способам изготовления композиционных материалов на основе никеля методом химического осаждения. Может применяться в авиационной промышленности для нанесения покрытий методом плазменного напыления. Неметаллический порошок направляют на прокатное устройство для получения полос, которые помещают в аттритор для получения гранул округлой формы. Неметаллический порошок с гранулами округлой формы смешивают с активирующим раствором, состоящим из щелочи с концентрацией 100-300 г/л и поверхностно-активного вещества с концентрацией 0,5-1,5 г/л. Химическое осаждение никеля проводят в нагретом реакционном растворе, содержащем соль никеля и восстановитель гипофосфит натрия. Полученный композиционный материал подвергают термической обработке при температуре 500-900°С в течение 40-180 мин. Обеспечивается равномерное покрытие гранул, повышение насыпной плотности композиционного материала и повышение равномерности получаемого покрытия. 4 ил., 1 пр. Подробнее
Дата
2019-12-04
Патентообладатели
Соболева Елена Савватьевна
Авторы
Соболева Елена Савватьевна
СПОСОБ ПОЛУЧЕНИЯ БИОКОМПОЗИТНОЙ КОРМОВОЙ ДОБАВКИ ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ И ПТИЦЫ / RU 02721800 C1 20200522/
Открыть
Описание
Изобретенеие относится к кормопроизводству, а именно к способу получения биокомпозитной кормовой добавки для сельскохозяйственных животных и птицы. Способ получения биокомпозитной кормовой добавки для сельскохозяйственных животных и птицы включает смешивание порошка биологического материала и порошка монтмориллонитсодержащей глины. Монтмориллонитсодержащую глину предварительно седиментационно обогащают, затем активируют соляной кислотой 10%-ной, после чего промывают очищенной дистиллированной водой до нейтральной среды, сушат при температуре не более 900°C и измельчают на шаровой мельнице до размеров частиц не более 10 мкм. В качестве биологического материала используют биомассу кормовых дрожжей Pichia pastoris, Faex medicinalis, Saccaromicete spp, или их комбинации, которые заливают 5%-ным раствором щелочи в соотношении 4:5 и перемешивают 30 минут при комнатной температуре, после чего щелочь нейтрализуют порошком лимонной кислоты в стехиометрическом соотношении при перемешивании при комнатной температуре до достижения нейтральной среды. Затем биомассу отстаивают и декантируют надосадочную жидкость, далее биомассу нагревают до 40°C и постепенно при постоянном механическом перемешивании добавляют в подготовленную монтмориллонитсодержащую глину. Биомассу кормовых дрожжей берут в количестве 80-90 мас.%, а монтмориллонитсодержащую глину в количестве 20-10 мас.%. Смесь тщательно перемешивают в течение не менее 40 минут и подвергают мягкой сушке при t=65°С до влажности не более 30%. Высушенную композицию перемалывают до тонкодисперсной однородной среды. Использование изобретения позволит профилактировать заболевания желудочно-кишечного тракта и интоксикацию различной этиологии. 10 пр., 2 ил. Подробнее
Дата
2019-12-04
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Белгородский государственный национальный исследовательский университет"" "
Авторы
Круть Ульяна Александровна , Олейникова Ирина Ивановна , Кузубова Елена Валерьевна , Радченко Александра Игоревна
Установка для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы на поверхности детали / RU 02718785 C1 20200414/
Открыть
Описание
Изобретение относится к установке для получения наноструктурированных композитных многофункциональных покрытий из материала с эффектом памяти формы. Техническим результатом изобретения является увеличение срока эксплуатации установки. Установка содержит вакуумную камеру с вакуумным насосом, два магнетрона и источник для ионной имплантации металлов, газопламенную горелку, механизм подачи порошкового материала с эффектом памяти формы в газопламенную горелку, пирометр для измерения температуры обрабатываемой детали, технологический модуль для ионной очистки обрабатываемой детали, понижающий трансформатор, управляющее устройство, пресс для поверхностно-пластического деформирования с зажимным механизмом закрепления детали, устройство для охлаждения поверхности детали, газовый баллон с инертным газом для создания инертной атмосферы в вакуумной камере с давлением 2-4 бар, дополнительный газовый баллон с аргоном с редуктором, штуцером для подачи инертного газа в камеру, гибким шлангом и регулируемым вентиляционным отводом и манометром. Диффузионный насос прикреплен к раме и соединен с корпусом вакуумной камеры. Порошковый дозатор-механоактиватор с металлической мешалкой, сообщенной с электродвигателем, жестко закреплен в кожухе для охлаждения. Дозатор-механоактиватор связан посредством линии транспортировки порошка с ЭПФ с газопламенной горелкой. Металлическое сито имеет размер отверстий 5 мкм. Дозатор-механоактиватор связан с газовым баллоном с инертным газом, с диффузионным насосом и через вакуумный шланг сообщен с вакуумным насосом. 1 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-11-20
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Кубанский государственный технологический университет"" "
Авторы
Русинов Петр Олегович , Бледнова Жесфина Михайловна
Способ получения порошкового композита на основе меди с улучшенными прочностными характеристиками / RU 02718523 C1 20200408/
Открыть
Описание
Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе меди. Может использоваться в электротехнической промышленности. Фракцию медного порошка с размерами не более 5,0 мкм смешивают с порошком терморасширенного графита в соотношениях 99,00-99,95 мас.% медного порошка – 0,05-1,00 мас.% терморасширенного графита. Полученную смесь перемешивают и производят микромеханическое расщепление терморасширенного графита путем помола в планетарной шаровой мельнице в режиме 330-370 оборотов в минуту на протяжении 5-6 часов. Полученную смесь прессуют и подвергают термообработке. Обеспечивается улучшение эксплуатационных характеристик композиционного материала, в первую очередь, повышается прочность на растяжение. 2 з.п. ф-лы, 3 ил., 1 табл., 1 пр. Подробнее
Дата
2019-11-15
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Санкт-Петербургский политехнический университет Петра Великого"" "
Авторы
Конаков Владимир Геннадьевич , Арчаков Иван Юрьевич , Курапова Ольга Юрьевна
Способ получения альгинат-хитозановых микрокапсул с винпоцетином / RU 02716000 C1 20200305/
Открыть
Описание
Изобретение относится к производству лекарственных форм в виде микрокапсул, содержащих винпоцетин. Способ получения микрокапсул винпоцетина с оболочкой на основе хитозана и солей альгиновой кислоты включает получение гомогенной суспензии винпоцетина в 1-3% водном растворе альгината натрия, экструзию суспензии, содержащей винпоцетин в концентрации 0,2 мг/мл, с помощью шприца с иглой диаметром 100 мкм посредством выпуска потока текучей среды с получением непрерывного потока микрокапель, имеющих одинаковые размеры, в 0,5% (вес/объем) раствор хитозана в 1,0% уксусной кислоте; выдержку полученных ядер микрокапсул в растворе хитозана в 1,0% уксусной кислоте в течение 30 минут; внесение в раствор хитозана, содержащий микрокапсулы, навески порошка хлорида кальция в количестве, необходимом для получения 2,0% раствора при полном растворении реагента при интенсивном перемешивании, последующее выдерживание микрокапсул в полученном растворе еще в течение 30 минут, извлечение микрокапсул из раствора, трижды промывку трижды дистиллированной водой и сушку в сушильном шкафу при температуре 35°С до сохранения постоянной массы. 3 ил., 1 пр. Подробнее
Дата
2019-11-06
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Воронежский государственный университет"" "
Авторы
Полковникова Юлия Александровна
Способ получения волокнистого кремния / RU 02717780 C1 20200325/
Открыть
Описание
Изобретение относится к химической технологии получения волокнистого кремния и может найти применение для использования в порошковой металлургии, литий-ионных источниках тока, преобразователях солнечной энергии, полупроводниковых приборах, таких как термоэлектрические преобразователи, тензодатчики и переключатели. Волокнистый кремний получают восстановлением диоксида кремния при высокой температуре с использованием фторсодержащего восстановителя, в качестве которого используют субфторид алюминия, образующийся при взаимодействии алюминия и трифторида алюминия, взятых в массовом соотношении алюминий : трифторид алюминия = 13÷40:60÷87, при этом восстановление диоксида кремния, взятого в количестве 15÷65 мас. % от общего количества алюминия и фторида алюминия, осуществляют с предварительным вакуумированием в токе инертного газа со скоростью подачи 0,1÷10,0 см3/мин на каждый 1 см2 поверхности порошка диоксида кремния при температуре 900÷1100°С и давлении 1÷10 Па со скоростью нагрева 1÷10 град/мин. Изобретение позволяет получать микроволокна кремния высокой чистоты в одну стадию. 3 ил., 3 пр. Подробнее
Дата
2019-10-22
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Авторы
Шишкин Роман Александрович , Кудякова Валерия Сергеевна
Способ получения пористого керамического материала с трехуровневой поровой структурой / RU 02722480 C1 20200601/
Открыть
Описание
Изобретение относится к технологии получения пористых керамических материалов и может быть использовано при изготовлении деталей, работающих в условиях трения, носителей катализаторов, фильтров, в медицине при изготовлении остеоимплантов. Способ получения пористого керамического материала с трехуровневой поровой структурой включает приготовление порошковой смеси из микродисперсных оксидных порошков, полых микросфер – пустотелых частиц аналогичного используемым оксидным порошкам химического состава, порообразующих частиц сверхвысокомолекулярного полиэтилена со средним размером частиц от 40 до 200 мкм и органического связующего – смеси парафина и воска, взятых в соотношении 9:1, формование из порошковой смеси заготовки материала или изделия и последующую термообработку, при следующем соотношении компонентов, об.%: оксидные порошки 10 - 50, полые микросферы – пустотелые частицы оксидного порошка 10 - 50, порообразующие частицы 10 - 50, органическое связующее 10, при этом спекание заготовки материала или изделия проводят в три этапа: отжиг органических порообразующих частиц путем нагрева со скоростью 50 °С*час-1 до температуры 300±10 °С, затем нагрев со скоростью 30 °С*час-1 до температуры 500±10 °С; промежуточное спекание со скоростью нагрева 50 °С*час-1 до температуры 1150-1250 °С с изотермической выдержкой в течение 1 часа; окончательное спекание со скоростью нагрева 100 °С*час-1 до температуры 1400-1600 °С с изотермической выдержкой в течение 1 часа. Изобретение развито в зависимых пунктах формулы. Технический результат – получение прочного пористого керамического материала с трехуровневой поровой структурой различного морфологического строения, являющейся основной эксплуатационной характеристикой и определяющей сферу применения этого материала. 2 з.п. ф-лы, 2 ил., 3 пр. Подробнее
Дата
2019-10-14
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский Томский государственный университет"" "
Авторы
Кульков Сергей Николаевич , Буяков Алесь Сергеевич , Буякова Светлана Петровна
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ ДЕКОРАТИВНОГО БЕТОНА С ФОТОЛЮМИНЕСЦЕНТНЫМ ПИГМЕНТОМ / RU 02715494 C1 20200228/
Открыть
Описание
Изобретение относится к области производства строительных материалов и может быть использовано для изготовления изделий, малых архитектурных форм любой конфигурации и размеров из декоративного бетона, обладающих свойствами свечения в темное время суток на весь период эксплуатации. Способ заключается в том, что предварительно готовят порошок фотолюминесцентного пигмента, укладывают бетонную смесь в форму, производят вибрацию формы с последующей упаковкой отформованного изделия в водонепроницаемый материал с выдержкой не менее 24 часов в форме до полного затвердевания изделия. При этом фотолюминесцентный пигмент вводят в бетонную смесь на стадии сухого перемешивания в диапазоне до 10% от массы цемента. На стадии мокрого перемешивания вводят добавку поликарбоксилатного типа с получением водоцементного отношения, не превышающего 0,45. Извлекают изделие из формы, после чего изделие выдерживают в течение 96 часов при нормальных условиях твердения. Затем покрывают изделие пропиткой на основе акрила. Техническим результатом является повышение стойкости свечения изделия в темное время суток в течение всего срока службы без дополнительного покрытия и без снижения физико-механических свойств бетона. 1 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-10-14
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Белгородский государственный технологический университет им. В.Г. Шухова"" "
Авторы
Сулейманова Людмила Александровна , Малюкова Марина Валерьевна , Корякина Алина Александровна
СПОСОБ ПОВЫШЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ СТАЛИ АБ2-1 ПРИ ОСУЩЕСТВЛЕНИИ ПРЯМОГО ЛАЗЕРНОГО ВЫРАЩИВАНИЯ МЕТАЛЛИЧЕСКИХ ЗАГОТОВОК / RU 02724210 C1 20200622/
Открыть
Описание
Изобретение относится к прямому лазерному выращиванию металлических заготовок из стали АБ2-1 с повышением ее механических свойств. На подложку, размещенную в рабочей герметичной камере, заполненной аргоном высокой чистоты до избыточного давления в пределах от 2 МПа до 5 МПа с содержанием остаточного кислорода не более 500 ppm, последовательно наносят слои металлического порошка из стали АБ2-1 фракции от 45 мкм до 200 мкм. Порошок подают посредством транспортного газа в зону осаждаемого металла через сопло установки для прямого лазерного выращивания с расходом транспортного газа от 10 л/мин до 40 л/мин и массовым расходом металлического порошка от 30 г/мин до 100 г/мин. Изменяют скорость перемещения сопла относительно подложки в пределах от 15 мм/с до 35 мм/с, шаг вертикального смещения слоев в пределах от 0,2 мм до 1 мм, шаг поперечного смещения слоев в пределах от 1,4 мм до 2 мм и воздействуют на металлический порошок лазерным лучом мощностью в пределах от 2 кВт до 3 кВт, сфокусированным в пятно диаметром от 1 мм до 5 мм. Обеспечивается получение судостроительных материалов с высокой прочностью и хладостойкостью для эксплуатации, в том числе в условиях Арктики. 3 ил., 1 табл. Подробнее
Дата
2019-10-14
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Санкт-Петербургский государственный морской технический университет"" "
Авторы
Сомонов Владислав Валерьевич , Корсмик Рудольф Сергеевич , Климова-Корсмик Ольга Геннадьевна , Мендагалиев Руслан Валисович
Способ получения трехмерных изделий сложной формы со структурой нативной трабекулярной кости на основе высоковязкого полимера / RU 02708589 C1 20191209/
Открыть
Описание
Изобретение относится к способу получения трехмерных изделий сложной формы. Техническим результатом является наибольшее соответствие полученного изделия структуре нативной трабекулярной кости. Технический результат достигается способом получения трехмерных изделий сложной формы, который включает изготовление обратной формы, являющейся негативом трабекулярной кости, путем заполнения трабекулярной кости порошком полимерного сырья, температура стеклования или плавления которого превышает температуру размягчения или плавления высоковязкого полимера. Затем проводят спекание трабекулярной кости с полимерным сырьем при температуре 160-380° С и удаление трабекулярной кости в ходе химического процесса, не повреждающего материал обратной формы. Затем заполняют внутренние полости обратной формы порошком высоковязкого полимера, либо смесью порошка высоковязкого полимера и неорганического наполнителя со средним размером частиц высоковязкого полимера 120 мкм и показателем текучести расплава высоковязкого полимера при 190°С и нагрузке 21,19 Н менее 1 г/10 мин. Последующее спекание порошкового высоковязкого полимера либо смеси порошка высоковязкого полимера и неорганического наполнителя во внутренних полостях обратной формы проводят в пресс-форме для горячего прессования под давлением 10-80 МПа с последующим удалением обратной формы с помощью обработки, не повреждающей полученное трехмерное изделие сложной формы. При этом получают трехмерные изделия сложной формы с размерами пор от 50 до 3000 мкм и формой, отличной от сферической. 5 з.п. ф-лы, 4 ил., 2 пр. Подробнее
Дата
2019-10-07
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский технологический университет ""МИСиС"" "
Авторы
Булыгина Инна Николаевна , Сенатов Фёдор Святославович , Калошкин Сергей Дмитриевич , Максимкин Алексей Валентинович , Анисимова Наталья Юрьевна , Киселевский Михаил Валентинович
Шихта для получения огнеупорного конструкционного керамического материала / RU 02720337 C1 20200429/
Открыть
Описание
Изобретение относится к огнеупорным материалам, которые могут быть использованы в черной и цветной металлургии в качестве футеровки доменных, шахтных и других печей. Шихта для получения огнеупорного конструкционного керамического материала включает, мас.%: карбидкремниевые порошки фракций 4,0-1,5 мм, 1,5-0,5 мм, 0,5-0,25 мм, 0,25-0,07 мм и 0,07-0,001 мм - 60-92; порошок кремния технический молотый 5,0-25,0; пудра алюминиевая 0,1-5,0; глинозём 0,1-20,0; декстрин и/или лингосульфонат кальциевый 0,5-5,0, при этом фракции карбидокремниевых порошков взяты от их общего количества в следующих мас.%: 4,0-1,5мм - 10-0, 1,5-0,5 мм - 5-50, 0,5-0,25 мм - 3-25, 0,25-0,07 мм - 2-25, 0,07-0,001 мм - 2-20. Технический результат – повышение коррозионной стойкости и стойкости к абразивному и эрозионному износу. 1 табл., 11 пр. Подробнее
Дата
2019-10-04
Патентообладатели
"Открытое акционерное общество "" Волжский абразивный завод"" "
Авторы
Данилова Оксана Юрьевна , Ушакова Наталья Викторовна
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ Al2O3 -TiCN / RU 02707216 C1 20191125/
Открыть
Описание
Изобретение относится к производству композиционного материала на основе Al2O3-TiCN и может быть использовано в инструментальной промышленности при производстве сменных многогранных режущих пластин. Для получения композиционного материала осуществляют подготовку порошковой смеси шихты, состоящей из порошка α - Al2O3, легированного 0,5-1,0 мас.% Y2O3 и 0,1-0,5 мас.% MgO, и порошка TiCN при следующем соотношении компонентов, мас.%: 60-80 α - Al2O3 и 20-40 TiCN. Изготавливают из исходных порошков Al2O3 и TiCN водные суспензии с последующим диспергированием. Смешивают суспензии в шаровой мельнице. Вводят в 1 мас.% поливиниловый спирт, гранулируют порошки путем распыления готовой суспензии в жидкий азот с последующей лиофильной сушкой. Формуют заготовки методом предварительного осевого прессования и окончательного гидростатического. Получают покрытие нитрида алюминия на частицах Al2O3 при нагреве прессовок от комнатной температуры до 1450°С в протоке азота с выдержкой при максимальной температуре 1-4 часа. Спекают композиционный материал в среде аргона при температуре 1800°С. Обеспечивается повышение прочности при изгибе, твердости и трещиностойкости композиционного материала. 4 ил. Подробнее
Дата
2019-09-27
Патентообладатели
"ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ""НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ"" "
Авторы
Карпович Захар Алексеевич , Веселов Сергей Викторович , Янпольский Василий Васильевич , Тюрин Андрей Геннадиевич , Черкасова Нина Юрьевна , Батаев Владимир Андреевич , Буров Владимир Григорьевич , Кузьмин Руслан Изатович , Квашнин Вячеслав Игоревич , Зыкова Екатерина Дмитриевна , Фелофьянова Анна Владиславовна , Виноградов Алексей Александрович , Максимов Руслан Александрович , Батаев Анатолий Андреевич
Способ получения наноразмерной нитроцеллюлозы или композитов на ее основе / RU 02724764 C1 20200625/
Открыть
Описание
Изобретение относится к технологии высокоэнергетических материалов, а именно к способу получения наноразмерной нитроцеллюлозы или композитов на ее основе, заключающийся в том, что 1-3 мас.% раствор нитроцеллюлозы в ацетоне или суспензию углеродных нанотрубок в 1-3 мас.% растворе нитроцеллюлозы в ацетоне, или суспензию наночастиц оксида железа (III) в 1-3 мас.% растворе нитроцеллюлозы в ацетоне, или суспензию смеси углеродных нанотрубок и наночастиц оксида железа (III) в 1-3 мас.% растворе нитроцеллюлозы в ацетоне обрабатывают сверхкритическим диоксидом углерода при температуре 35-50°С и давлении 9-15 МПа, и процесс проводят в осадительной камере, предварительно заполненной сверхкритическим диоксидом углерода, путем непрерывной и одновременной подачи в нее раствора исходной нитроцеллюлозы или суспензии в нем через капилляр с внутренним диаметром 0,76 мм со скоростью 0,1-4 мл/мин и сверхкритического диоксида углерода со скоростью 5-50 г/мин с последующей дополнительной обработкой полученного в процессе осаждения целевого продукта в виде порошка пятикратным относительно осадительной камеры объемом сверхкритического диоксида углерода. Для получения композитов на основе 1-3 мас.% раствора НЦ в ацетоне используют суспензию углеродных нанотрубок в количестве 0,5-4 мас.% от нитроцеллюлозы, или наноразмерные частицы оксида железа (III) в количестве 1-5 мас.% от нитроцеллюлозы, или смеси углеродных нанотрубок и наночастиц оксида железа (III), взятых в количестве 0,5-4 мас.% и 1-5 мас.%, соответственно. Техническим результатом является повышение пожарной безопасности процесса за счет проведения его в среде негорючего, термически и химически стабильного диоксида углерода, упрощение процесса за счет исключения стадии промывки и сушки целевого продукта, полного отсутствия сточных вод. Способ является универсальным и позволяет получать как наноразмерную нитроцеллюлозу индивидуально, так и нанокомпозиты на ее основе без существенных изменений технологической схемы и параметров процесса. Получаемые материалы находят широкое применение в изготовлении нитроцеллюлозных пресс-порошков, порохов и других высокоэнергетических составов. 1 з.п. ф-лы, 5 ил. Подробнее
Дата
2019-09-27
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт органической химии им. Н.Д. Зелинского Российской академии наук
Авторы
Жарков Михаил Николаевич , Кучуров Илья Владимирович , Злотин Сергей Григорьевич
СПОСОБ ПОЛУЧЕНИЯ СВЕРХЧИСТОГО ВОДОРОДА ПАРОВЫМ РИФОРМИНГОМ ЭТАНОЛА / RU 02717819 C1 20200325/
Открыть
Описание
Изобретение относится к области создания катализаторов и реакторов для химической и нефтехимической промышленности, а именно к процессам дегидрирования и парового риформинга низших алифатических спиртов с целью получения высокочистого водорода, пригодного для использования в топливных элементах. Способ включает ввод в мембранно-каталитический реактор смеси этанола и водяного пара, паровой риформинг этанола при повышенной температуре на металлсодержащем катализаторе с одновременным выводом образующегося сверхчистого водорода через водородселективную мембрану из палладийсодержащего сплава как пермеата, сдувку сверхчистого водорода газом-носителем и вывод ретентата. Причем в качестве палладийсодержащего сплава используют сплав 93,5 мас.% Pd, 0,5 мас.% Ru, 6,0 мас.% In, а в качестве катализатора - сплав, выбранный из Pd-Ru и Pt-Ru при содержании второго компонента 10 мас.%, нанесенный на порошок детонационных наноалмазов. Паровой риформинг этанола проводят при температурах 380-650°С и давлении 1-3 атм с выводом ретентата как дополнительного продукта - водородсодержащего газа. Технический результат заключается в повышении выхода водорода, пригодного для применения в топливных элементах, при одновременном смягчении условий реакции и увеличении срока службы мембраны. 3 табл., 19 пр. Подробнее
Дата
2019-09-25
Патентообладатели
Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук
Авторы
Миронова Елена Юрьевна , Ярославцев Андрей Борисович , Ермилова Маргарита Мееровна , Орехова Наталья Всеволодовна
СПОСОБ ПОЛУЧЕНИЯ МИКРОПОРИСТОГО ТРИМЕЗИАТА МЕДИ(II) / RU 02718678 C1 20200413/
Открыть
Описание
Изобретение относится к области химии и химической технологии, а именно к координационной и синтетической химии металл-органических координационных полимеров, обладающих сорбционной ёмкостью, в частности к способу получения микропористого тримезиата меди(II), включающему этапы, на которых в этиловом спирте растворяют тримезиновую кислоту и добавляют водный раствор соли меди(II) с получением смеси, в которой следующее соотношение компонентов, масс.%: 50–80% спирта, 5–10% тримезиновой кислоты, 10–20% соли меди, вода — остальное, причем смесь нагревают при 20–100°C в течение 0,5–5 часов с периодическим добавлением по каплям 0,5–2%-ого раствора щелочного агента или добавлением щелочного агента в количестве от 0,5 до 2 мольных частей на каждую мольную часть соли меди, выделяют осадок, который охлаждают до 20-30°C, очищают последовательной обработкой этанолом и дистиллированной водой или водным раствором этанола с концентрацией 10–30% и высушивают на воздухе при 70-80°C до появления у порошка фиолетового цвета. Технический результат патентуемого решения заключается в увеличении сорбционной ёмкости по отношению к газам и парáм за счет увеличения площади поверхности и объёма пор готового продукта. 3 з.п. ф-лы, 4 ил., 4 пр. Подробнее
Дата
2019-09-25
Патентообладатели
"ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ ""ИНЖИНИРИНГОВЫЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ЦЕНТР"" "
Авторы
Князев Алексей Сергеевич , Коваленко Константин Александрович , Федин Владимир Петрович , Сагидуллин Алексей Каусарович , Орлиогло Богдан Михайлович , Болотов Всеволод Александрович , Мазов Илья Николаевич , Горбин Сергей Игоревич , Мальков Виктор Сергеевич