Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
Устройство для изоляции зон осложнения труб перекрыватель интеллектуальный полимерный / RU 02724164 C1 20200622/
Открыть
Описание
Изобретение относится к изоляции зон осложнения труб и трубопроводов различного назначения, например магистральных, промысловых и других трубопроводов из трубных секций или из отдельных труб, предназначенных для транспортирования нефти, подтоварной воды, газа, нефтепродуктов, воды и других сред. включающем Устройство включает трубчатый перекрыватель и выправляющий элемент. Трубчатый перекрыватель выполнен в виде расширяемой втулки из модифицированного термопластичного полимера с возможностью расширения в диаметре при нагревании до размера, превышающего внутренний диаметр трубы, наружная поверхность которой выполнена с адгезионным слоем, температура плавления которого ниже температуры плавления материала втулки. Выправляющий элемент представляет собой нагреватель, обеспечивающий нагрев втулки до температуры расширения. В качестве нагревателя использован электрический нагреватель. Упрощается конструкция, повышается надежность и функциональность. 2 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-12-20
Патентообладатели
Закрытое акционерное общество «Уральский завод полимерных технологий «Маяк»
Авторы
Алявдин Дмитрий Вячеславович
Способ трехмерной печати термопластичным композиционным материалом / RU 02722944 C1 20200605/
Открыть
Описание
Изобретение относится к трехмерной печати термопластичным композиционным материалом. Осуществляют предварительную пропитку армированной нити расплавленным матричным полимером под давлением, сушку армированной нити, подачу армированной нити в экструдер печатающей головки, нагрев армированной нити до температуры, превышающей температуру плавления матричного полимера армированной нити, экструдирование армированной нити на поверхность детали с образованием приваренного слоя композитного материала с обрезкой армированной нити. После подачи в зону трехмерной печати армированной нити приваривают ее при одновременном воздействиии температуры, превышающей температуру плавления матричного материала армированной нити, и ультразвуковых колебаний. Процесс печати осуществляют в термостатированной подогреваемой камере. В результате чего обеспечивается возможность изготовления детали сложной геометрии. 3 ил. Подробнее
Дата
2019-11-21
Патентообладатели
"Акционерное общество ""ОДК-Авиадвигатель"" "
Авторы
Мовчун Петр Анатольевич , Минькова Анфиса Андреевна , Попова Анастасия Григорьевна , Кобелев Николай Валерьевич , Гринев Михаил Анатольевич , Бояршинов Михаил Владимирович
Способ определения степени сшивки при исследовании перекрестно-сшитых поликапролактонов / RU 02718130 C1 20200330/
Открыть
Описание
Изобретение относится к области химии полимеров, в частности к определению степени сшивки. Способ определения степени сшивки при исследовании перекрестно-сшитых поликапролактонов заключается в том, что сравнивают характеристический параметр исследуемого и эталонного образцов и оценивают степень сшивки исследуемого образца из зависимости между известной степенью сшивки эталонного образца и его характеристического параметра по градуировочным графикам, для чего образец перекрестно-сшитого поликапролактона в нанограммовом количестве помещают на чип-сенсор быстрого сканирующего калориметра, проводят предварительное нагревание образца до температуры выше температуры плавления с последующим охлаждением, при этом в качестве характеристического параметра используют полупериод кристаллизации, для определения которого после предварительного нагревания и охлаждения образца осуществляют быстрое нагревание образца до температуры выше температуры плавления со скоростью не менее 5000 К/c; нагретый образец охлаждают до минус 80°C со скоростью не менее 5000 К/c и выдерживают при минус 80°C в течение 1 с; далее проводят нагревание до 0°C со скоростью не менее 5000 К/с; далее выдерживают образец при 0°C в течение 0,01 с, затем нагревают до температуры выше температуры плавления со скоростью 1000 К/с; далее неоднократно повторяют последовательность действий, начиная с этапа охлаждения образца до минус 80°C со скоростью не менее 5000 К/c и заканчивая этапом нагревания выше температуры плавления со скоростью 1000 К/с, при этом на этапе выдерживания образца при 0°C изменяют время выдерживания при каждом повторении последовательности действий - 0,02; 0,05; 0,1 с и далее линейно по логарифмической шкале до 500 с; далее рассчитывают общую скрытую энтальпию плавления при всех временах выдерживания путем интегрирования полученных калориметрических кривых нагревания; далее рассчитывают отношение общей скрытой энтальпии плавления при данном времени выдерживания к максимально возможному значению общей скрытой энтальпии плавления для данного образца; далее определяют величину полупериода кристаллизации t1/2, соответствующую времени выдерживания, необходимому для достижения степени кристалличности полимера 50%; далее определяют степень сшивки исследуемого образца по градуировочному графику в координатах lg(t1/2) - степень сшивки N [моль/см3], построенному на основе исследования эталонных образцов. Техническим результатом является определение степени сшивки перекрестно-сшитого поликапролактона с использованием минимального количества образца полимера, а также уменьшение времени и достижение высокой точности определения. 5 ил. Подробнее
Дата
2019-10-31
Патентообладатели
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский федеральный университет"
Авторы
Седов Игорь Алексеевич , Абдуллин Альберт Радикович
Способ получения трехмерных изделий сложной формы со структурой нативной трабекулярной кости на основе высоковязкого полимера / RU 02708589 C1 20191209/
Открыть
Описание
Изобретение относится к способу получения трехмерных изделий сложной формы. Техническим результатом является наибольшее соответствие полученного изделия структуре нативной трабекулярной кости. Технический результат достигается способом получения трехмерных изделий сложной формы, который включает изготовление обратной формы, являющейся негативом трабекулярной кости, путем заполнения трабекулярной кости порошком полимерного сырья, температура стеклования или плавления которого превышает температуру размягчения или плавления высоковязкого полимера. Затем проводят спекание трабекулярной кости с полимерным сырьем при температуре 160-380° С и удаление трабекулярной кости в ходе химического процесса, не повреждающего материал обратной формы. Затем заполняют внутренние полости обратной формы порошком высоковязкого полимера, либо смесью порошка высоковязкого полимера и неорганического наполнителя со средним размером частиц высоковязкого полимера 120 мкм и показателем текучести расплава высоковязкого полимера при 190°С и нагрузке 21,19 Н менее 1 г/10 мин. Последующее спекание порошкового высоковязкого полимера либо смеси порошка высоковязкого полимера и неорганического наполнителя во внутренних полостях обратной формы проводят в пресс-форме для горячего прессования под давлением 10-80 МПа с последующим удалением обратной формы с помощью обработки, не повреждающей полученное трехмерное изделие сложной формы. При этом получают трехмерные изделия сложной формы с размерами пор от 50 до 3000 мкм и формой, отличной от сферической. 5 з.п. ф-лы, 4 ил., 2 пр. Подробнее
Дата
2019-10-07
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский технологический университет ""МИСиС"" "
Авторы
Булыгина Инна Николаевна , Сенатов Фёдор Святославович , Калошкин Сергей Дмитриевич , Максимкин Алексей Валентинович , Анисимова Наталья Юрьевна , Киселевский Михаил Валентинович
ПОРОШКОВЫЙ ФОРПОЛИМЕР ТЕРМОКОМПРЕССИОННОГО СИНТАКТИЧЕСКОГО ПЕНОПЛАСТА / RU 02709129 C1 20191216/
Открыть
Описание
Изобретение относится к порошковому форполимеру термокомпрессионного синтактического пенопласта. Порошковый форполимер термокомпрессионного синтактического пенопласта содержит полимерные нерасширенные микросферы, способные к расширению в температурном диапазоне до 150 °С, термостойкостью не менее 170 °С, диаметром до 40 мкм в нерасширенном состоянии и насыпной плотностью в расширенном состоянии не более 40 кг/м3, взятые в количестве 4-50 мас. % от общей массы композиции, порошок термопластичного полимера с размером частиц 1-315 мкм и температурой текучести (или плавления) не более 150 °С, в количестве 50-95 мас. % от общей массы композиции, пирогенный диоксид кремния с удельной поверхностью в диапазоне 175-380 м2/г в количестве 0,02-1 мас. % от общей массы композиции и неорганический наполнитель-пигмент в количестве 0-20 мас. % от общей массы композиции. Изобретение позволяет создать синтактические пеноматериалы методом спекания в формообразующей оснастке, обладающие способностью к вторичному расширению и термической сварке. 4 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-08-15
Патентообладатели
"Общество с ограниченной ответственностью ""Научно-исследовательский центр ""Современные полимерные материалы"" "
Авторы
Бабин Анатолий Николаевич , Платонов Максим Михайлович
СПОСОБ ИЗГОТОВЛЕНИЯ ТОПЛИВНОГО ЭЛЕМЕНТА И ТОПЛИВНЫЙ ЭЛЕМЕНТ / RU 02714695 C1 20200219/
Открыть
Описание
Изобретение относится к способу изготовления топливного элемента и к топливному элементу. Согласно изобретению в способе изготовления топливного элемента два сепаратора взаимно скреплены с уплотняющим элементом. Уплотняющий элемент содержит термопластичную смолу, содержащую кристаллический полимер в качестве клеевого слоя. Способ изготовления топливного элемента содержит: подготовку слоистой структуры, в которой уплотняющий элемент размещен между двумя сепараторами; нагревание слоистой структуры при температуре плавления термопластичной смолы или выше; после нагревания выдерживание слоистой структуры в температурном диапазоне ±10°С от температуры кристаллизации термопластичной смолы для активизации кристаллизации термопластичной смолы и после выдерживания дальнейшее охлаждение слоистой структуры. Техническим результатом является улучшение прочности скрепления сепаратора. 2 н. и 9 з.п. ф-лы, 10 ил., 4 пр., 1 табл. Подробнее
Дата
2019-07-18
Патентообладатели
ТОЙОТА ДЗИДОСЯ КАБУСИКИ КАЙСЯ
Авторы
СУГИМОТО Тосики , ЁСИДА Макото , СУДЗУКИ Сюнсукэ , ХАЯСИ Томокадзу , ТАКЭСИТА Синя , МИЦУОКА Такуя , СУГАНУМА Ёситакэ , КАТО Юити , НАКАИ Кёко
Способ получения (со)полимера гликолида и/или лактида для изготовления рассасывающихся хирургических изделий / RU 02715383 C1 20200227/
Открыть
Описание
Изобретение относится к способу получения (со)полимера гликолида и/или лактида для изготовления рассасывающихся хирургических изделий. Способ получения (со)полимера гликолида и/или лактида для изготовления рассасывающихся хирургических изделий осуществляют полимеризацией гликолида и/или лактида в массе мономера под действием катализатора октаноата олова (II) в среде инертного газа при нагревании, способ отличается тем, что процесс ведут в присутствии 0,01-0,1 масс. % диоксида титана, реакционную массу сначала нагревают до 80-90°С с выдержкой 5 минут, затем до 200-210°С и при этой температуре осуществляют (со)полимеризацию при воздействии ультразвука в течение 20 минут. Технический результат - сокращение общего времени полимеризации, при этом полученные (со)полимеры имеют молекулярную массу и температуру плавления, необходимую для переработки в медицинские изделия и обладают высокой термостабильностью. 1 табл., 20 пр. Подробнее
Дата
2019-06-20
Патентообладатели
"Общество с ограниченной ответственностью ""ТВС"" "
Авторы
Спиридонова Регина Романовна , Ершов Иван Павлович , Федорчук Анна Николаевна , Галкина Елена Анатольевна
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ ИЗДЕЛИЙ С АНТИБАКТЕРИАЛЬНЫМИ СВОЙСТВАМИ НА ОСНОВЕ ПОЛУКРИСТАЛЛИЧЕСКИХ ПОЛИМЕРОВ / RU 02717268 C1 20200319/
Открыть
Описание
Изобретение относится к химии и технологии полимеров и касается способа получения полимерных изделий на основе полукристаллических (ПК) полимеров с антибактериальными свойствами, которые могут найти применение в текстильной промышленности, медицине, в изделиях специального назначения и т.д. Способ включает одноосную вытяжку полимерных изделий вытянутой формы в жидкой среде, содержащей растворенную соль серебра. В качестве исходных полимеров используют полукристаллические полимеры со степенью кристалличности более 20%. Сушат изделия в свободном состоянии или в изометрических условиях с последующим воздействием на изделие. При этом воздействие осуществляют путем термообработки изделия при температуре от 50°С до температуры плавления ПК полимера в течение не менее 5 с или путем облучения полимерного изделия светом ультрафиолетовой лампы в течение не менее 10 мин. Обеспечивается получение полимерных изделий с антибактериальными свойствами при однородном распределении функциональной добавки в наноразмерном состоянии по всему объему полимера. 5 з.п. ф-лы, 1 ил., 7 пр. Подробнее
Дата
2019-06-13
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Московский государственный университет имени М.В. Ломоносова"" "
Авторы
Аржакова Ольга Владимировна , Долгова Алла Анатольевна , Ярышева Алена Юрьевна , Дудник Анна Олеговна
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ИЗ АРМИРОВАННЫХ ТЕРМОПЛАСТИЧНЫХ МАТЕРИАЛОВ МЕТОДОМ ТЕРМОШТАМПОВАНИЯ / RU 02706614 C1 20191119/
Открыть
Описание
Изобретение относится к технологии производства композиционных изделий из углепластика и стеклопластика методом термоштампования, а именно к автоматизированному процессу изготовления изделий из армированных композитов с термопластичным связующим материалом, и предназначено для использования в процессе производства изделий для авиационной, судовой, автомобильной и строительной отраслей, а также спортивного инвентаря. Способ осуществляют с использованием системы, включающей установленные в технологической последовательности загрузочную тележку, печь, в крышке которой расположены нагревательные элементы, роботизированный манипулятор и гидравлический пресс с загрузочным столом. Согласно способу укладывают термопластичный полимер, армированный волокном, в форму. Форму с уложенным термопластичным материалом помещают на загрузочную тележку. Перемещают тележку под крышку печи, крышку с нагревательными элементами опускают на тележку с заготовкой. В печи осуществляют разогрев заготовки до температуры плавления термопластичного полимера препрега. После разогрева заготовки поднимают крышку печи и загрузочную тележку с заготовкой перемещают с помощью роботизированного манипулятора на загрузочный стол гидравлического пресса. Загрузочный стол перемещают в рабочую зону пресса. В гидравлическом прессе осуществляют формовку детали. Затем охлаждают деталь, извлекают ее из формы и проводят механическую обработку. Техническим результатом является получение изделий из композиционных материалов с термопластичным связующим автоматизированным способом, который позволяет снизить трудоемкость работ, улучшить показатели производительности и повысить точность изготовления деталей. 2 з.п. ф-лы, 3 ил. Подробнее
Дата
2018-11-22
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Пермский национальный исследовательский политехнический университет"" "
Авторы
Аношкин Александр Николаевич , Шипунов Глеб Сергеевич , Головин Данила Вячеславович , Мурзакаев Рустам Талгатович
Вкладыш эндопротеза / RU 02703615 C1 20191021/
Открыть
Описание
Изобретение относится к медицине, а именно к получению антифрикционных вкладышей на основе модифицированного политетрафторэтилена для искусственных эндопротезов суставов и способу его получения, и может использоваться в узлах трения эндопротезов тазобедренного, коленного, плечевого, локтевого суставов, а также межпозвоночных дисков. Вкладыш эндопротеза представляет собой деталь с криволинейной поверхностью, выполненную из модифицированного политетрафторэтилена. Исходные заготовки из политетрафторэтилена обрабатывают высокоэнергетическим ионизирующим излучением (альфа-излучение, электронное излучение, облучение протонами, нейтронами и другими ионизирующими частицами, тормозное гамма-излучение и гамма-излучение) при температуре строго выше температуры плавления кристаллической фазы полимера в бескислородной среде. Обработку заготовки из полимера осуществляют, в частности, с помощью ускорителя электронов, генерирующего тормозное гамма-излучение, до поглощенной дозы 0,5-500 кГр или эквивалентного в энергетическом отношении когерентного излучения высоких энергий. В процессе облучения температуру полимера понижают не более 0,5 °C /10 кГр. После обработки ионизирующим излучением полимер подвергают охлаждению до комнатной температуры со скоростью не более 60°С /час. Техническим результатом является обеспечение снижения развития деструкции участков полимера, и как следствие, снижение интенсивности износа, соответственно, повышение срока службы вкладыша и обеспечение гарантированной работы более 10 лет. 11 з.п. ф-лы. Подробнее
Дата
2018-10-05
Патентообладатели
Слесаренко Сергей Витальевич
Авторы
Слесаренко Сергей Витальевич
Способ получения материала-носителя биомассы для биологической очистки сточных вод / RU 02682532 C1 20190319/
Открыть
Описание
Изобретение может быть использовано в области биологической очистки промышленных и бытовых сточных вод для создания материалов, обладающих иммобилизационной способностью при использовании в качестве носителя активной биомассы. Способ включает изготовление материала из полимерных веществ, содержащих органические добавки, путем смешения с последующим экструдированием полученной смеси. В качестве синтетического полимера применяют полипропилен (ПП), в качестве органической добавки - полисахарид (ПС), выбранный из ряда: крахмал, микроцеллюлоза, либо их смесь в любом соотношении. Соотношение компонентов ПП:ПС составляет (80-60):(20-40) мас.%. Материал получают методом экструзии с использованием двухшнекового трехзонального экструдера с гранулирующей головкой. Гранулы полипропилена подают в зону с температурой 210°C. В зоне с температурой 220°C осуществляют процесс плавления и пластикации полипропилена. Полисахарид подают в третью зону с температурой 220°C, оснащенную элементами смешения. На выходе из экструдера готовый продукт получают в виде гранул диаметром 10-20 мм, плотностью 0,3-0,7 г/см3 и пористостью 50-70 %. Использование способа обеспечивает повышение способности материала к закреплению и удержанию биомассы микроорганизмов, упрощение и удешевление технологии получения пористого материала-носителя биомассы за счет проведения процесса в одну стадию. 2 ил., 1 табл., 13 пр. Подробнее
Дата
2018-04-13
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Воронежский государственный университет инженерных технологий"" "
Авторы
Корчагин Владимир Иванович , Студеникина Любовь Николаевна , Протасов Артем Викторович , Шелкунова Мария Владимировна , Дочкина Юлия Николаевна
ТЕРМОПЛАСТИЧНАЯ КОМПОЗИТНАЯ ТРУБА С МНОГОСЛОЙНОЙ ПРОМЕЖУТОЧНОЙ ПРОСЛОЙКОЙ / RU 02714587 C2 20200218/
Открыть
Описание
Группа изобретений относится к производству многослойных термопластичных композитных труб. Способ получения термопластичной композитной трубы включает следующие стадии: a) обеспечение трубчатой оболочки, имеющей стенку, содержащую термопластичный полимер A, в области внешней поверхности; b) обеспечение ленты, содержащей армирующие волокна в матрице, содержащей термопластичный полимер B, при этом полимер A и полимер B являются различными; c) нанесение пленки или композиционного материала, который получен на стадии d) и состоит из пленки и ленты, обеспеченной на стадии b), на трубчатую оболочку с плавлением внешней поверхности оболочки и контактной поверхности пленки либо предварительно, либо одновременно, либо после этого. Стадия d) содержит нанесение ленты, обеспеченной на стадии b), на внешнюю поверхность пленки с плавлением внешней поверхности наносимой пленки и контактной поверхности ленты либо предварительно, либо одновременно, либо после этого. При этом поверхность пленки, которую приводят в контакт с оболочкой, состоит из формовочной массы, содержащей полимер A в количестве по меньшей мере 30% по весу, и при этом противоположная поверхность пленки состоит из формовочной массы, содержащей полимер B в количестве по меньшей мере 30% по весу. Образование композиционного материала между идентичными полимерами на ключевой стадии способа приводит к достижению лучшего качества адгезии. Полученная таким образом труба является особенно подходящей для добычи нефти или газа при применениях в открытом море. 3 н. и 10 з.п. ф-лы. Подробнее
Дата
2018-01-09
Патентообладатели
Эвоник Оперейшенс ГмбХ
Авторы
Бергер Ясмин , Рис Ханс , Франош Юрген , Гёринг Райнер , Бейер Хорст
ТЕРМОПЛАСТИЧНАЯ КОМПОЗИТНАЯ ТРУБА С МНОГОСЛОЙНОЙ ПРОМЕЖУТОЧНОЙ ПРОСЛОЙКОЙ / RU 02709588 C2 20191218/
Открыть
Описание
Группа изобретений относится к производству многослойных термопластичных композитных труб. Способ получения термопластичной композитной трубы включает следующие стадии: a) обеспечение трубчатой оболочки, имеющей стенку, содержащую термопластичный полимер A, в области внешней поверхности; b) обеспечение ленты, содержащей армирующие волокна в матрице, содержащей термопластичный полимер B; с) обеспечение ленты, содержащей армирующие волокна в матрице, содержащей термопластичный полимер С. При этом полимер A и полимер B являются одинаковыми или различными, а полимер B и полимер C являются различными. Способ также включает стадии: d) нанесение ленты, обеспеченной на стадии b), на трубчатую оболочку посредством сварки; e) необязательно когезионное соединение дополнительных ленточных прослоек одинакового типа с ленточной прослойкой, нанесенной на стадии d); f) нанесение первой пленки или композиционного материала, который получен на стадии g) и состоит из первой пленки и ленты, обеспеченной на стадии c), на первый слой формируемого таким образом композиционного материала с плавлением внешней поверхности первого композитного слоя и контактной поверхности первой пленки либо предварительно, либо одновременно, либо после этого; g) нанесение ленты, обеспеченной на стадии c), на внешнюю поверхность первой пленки с плавлением внешней поверхности наносимой первой пленки и контактной поверхности ленты либо предварительно, либо одновременно, либо после этого; h) необязательно когезионное соединение дополнительных ленточных прослоек одинакового типа с ленточной прослойкой, нанесенной на стадии g). При этом второй композитный слой получают на стадиях g) и необязательно h). На стадии i) выполняют необязательно заключительное нанесение внешней покрывающей прослойки, состоящей из полимерного материала. При этом поверхность первой пленки, которую приводят в контакт с первым композитным слоем, состоит из формовочной массы, содержащей полимер B в количестве по меньшей мере 30% по весу, а противоположная поверхность первой пленки состоит из формовочной массы, содержащей полимер C в количестве по меньшей мере 30% по весу. Образование композиционного материала между идентичными полимерами на ключевой стадии способа приводит к достижению лучшего качества адгезии. Полученная таким образом труба является особенно подходящей для добычи нефти или газа при применениях в открытом море. 3 н. и 12 з.п. ф-лы. Подробнее
Дата
2017-12-28
Патентообладатели
Эвоник Оперейшенс ГмбХ
Авторы
Бергер Ясмин , Рис Ханс , Франош Юрген , Гёринг Райнер , Бейер Хорст
Полипропиленовая композиция, сочетающая низкую начальную температуру сварки и высокую температуру плавления / RU 02723096 C1 20200608/
Открыть
Описание
Изобретение относится к полипропиленовой композиции, к способу получения полипропиленовой композиции, к применению полипропиленовой композиции, и к пленке. Полипропиленовая композиция представляет собой бинарную смесь, состоящую из фракции PPF1 пропиленового полимера и фракции PPF2 пропиленового полимера. Фракция PPF1 содержится в композиции в количестве 30-50 мас.% и представляет собой пропиленовый сополимер, содержащий пропиленовые мономеры и от 1,50 до 7,00 мол.% одного сомономера, выбранного из С4-С10 альфа-олефина. Фракция PPF2 содержится в композиции в количестве 50-70 мас.% и представляет собой пропиленовый терполимер, содержащий пропиленовые мономеры, от 3,00 до 12,00 мол.% этиленового сомономера и от 1,50 до 17,0 мол.% одного сомономера, выбранного из С4-С10 альфа-олефина. Полипропиленовая композиция имеет температуру плавления (Тm) в диапазоне от 140 до 150°С, как определено с помощью ДСК в соответствии с ISO 11357, и удовлетворяет уравнению: Delta = Tm – SIT, где Delta находится в интервале от 41 до 46°С, Тm - температура плавления полипропиленовой композиции, в °С, SIT - начальная температура сварки полипропиленовой композиции, в °С, рассчитанная для гранул с помощью ДСК. Вышеуказанные количества фракций PPF1 и PPF2 пропиленового полимера рассчитаны относительно общей суммы фракций PPF1 и PPF2 пропиленовых полимеров. Способ получения полипропиленовой композиции заключается в том, что в первом реакторе (R-1) осуществляют полимеризацию пропилена и одного сомономера, выбранного из С4-С10 альфа-олефина, с получением фракции (PPF1) пропиленового полимера. Затем переносят фракцию (PPF1) пропиленового полимера и непрореагировавшие сомономеры из реактора (R-1) во второй реактор (R-2), являющийся первым газофазным реактором-1 (GPR-1). Далее в первом газофазном реакторе-1 (GPR-1) осуществляют полимеризацию пропилена, этилена и одного сомономера, выбранного из С4-С10 альфа-олефина, в присутствии фракции (PPF1) пропиленового полимера с получением фракции (PPF2) пропиленового полимера. После этого извлекают из реактора полипропиленовую композицию. Полипропиленовую композицию используют для получения пленки или многослойной пленки. Изобретение позволяет получить полипропиленовую композицию с улучшенной низкой температурой сварки и высокой температурой плавления. 4 н. и 8 з.п. ф-лы, 2 табл. Подробнее
Дата
2017-12-19
Патентообладатели
БОРЕАЛИС АГ
Авторы
РЕСКОНИ Луиджи , ЛЕСКИНЕН Паули , БОРАНЬО Лука , ХОФФ Маттиас , БЕРГЕР Фридрих
Композиция на основе полипропилена, имеющая низкую температуру начала сваривания и высокую температуру плавления / RU 02724050 C1 20200619/
Открыть
Описание
Изобретение относится к полипропиленовой композиции, к способу ее получения, к применению полипропиленовой композиции и к пленке. Полипропиленовая композиция представляет собой бинарную смесь, включающую от 30 до 50% масс. фракции пропиленового полимера ФПП1 и от 70 до 50% масс. фракции пропиленового полимера ФПП2. Фракция пропиленового полимера ФПП1 представляет собой сополимер пропилена, включающий пропиленовые мономеры и от 1,50 до 7,00% мол. сомономера, которым является C4-C10 альфа-олефин. Фракция пропиленового полимера ФПП2 представляет собой пропиленовый терполимер, включающий пропиленовые мономеры, от 0,30 до 3,00% мол. этиленового сомономера и от 3,50 до 12,00% мол. сомономера, которым является C4-C10 альфа-олефин. Полипропиленовая композиция удовлетворяет следующему уравнению: Дельта = Tm – ТНС, где Дельта составляет от 30 до 43°C, Tm представляет собой температуру, °C, плавления пропиленовой композиции и составляет от 135 до 160°C, ТНС представляет собой температуру, °C, начала сваривания пропиленовой композиции. Количества ФПП1 и ФПП2 вычислены в пересчете на суммарное содержание фракций пропиленовых полимеров ФПП1 и ФПП2. Способ получения полипропиленовой композиции заключается в том, что вначале проводят полимеризацию пропилена и одного сомономера C4-C10 альфа-олефина в первом реакторе, представляющем собой суспензионный реактор R-1. Затем осуществляют транспортировку полученной фракции пропиленового полимера ФПП1 и непрореагировавших сомономеров из реактора R-1 во второй реактор R-2, который представляет собой первый газофазный реактор-1, ГФР-1. Далее проводят полимеризацию пропилена, этилена и одного сомономера C4-C10 альфа-олефина в газофазном реакторе-1, ГФР-1, в присутствии фракции пропиленового полимера ФПП1 и получают фракцию пропиленового полимера ФПП2, которая представляет собой пропиленовый терполимер. После этого из реактора извлекают полипропиленовую композицию. Полипропиленовую композицию применяют для получения пленки или многослойной пленки. Изобретение позволяет получить композицию с низкой температурой сваривания (ТНС) и высокой температурой плавления (Tm). 4 н. и 8 з.п. ф-лы, 2 табл. Подробнее
Дата
2017-12-19
Патентообладатели
БОРЕАЛИС АГ
Авторы
РЕСКОНИ Луиджи , ВАХТЕРИ Маркку , АЛАСТАЛО Кауно , БОРАНЬО Лука , ХОФФ Маттиас , БЕРГЕР Фридрих , ДАС Шиталь , ТРАНКИДА Давиде
БАРЬЕРНАЯ ПЛЕНКА С УЛУЧШЕННОЙ ФОРМУЕМОСТЬЮ И НИЗКОЙ ТЕРМИЧЕСКОЙ УСАДКОЙ ПРИ ТЕМПЕРАТУРЕ ФОРМОВАНИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ / RU 02660836 C1 20180710/
Открыть
Описание
Изобретение относится к многослойным влаго- и газобарьерным относительно толстостенным термоформуемым пленкам и касается двухосно-ориентированной и термофиксированной плоской соэкструдированной барьерной пленки и способа ее изготовления, которая может быть использована в пищевой промышленности. Содержит наружный термосвариваемый слой, выполненный из (со)полиолефина с температурой размягчения по Вика не выше 130°С; термостойкий слой, выполненный из по меньшей мере одного полярного (со)полимера, выбранного из группы, включающей алифатические (со)полиамиды и ароматические (со)полиэфиры; сердцевинный адгезивный слой из материала, имеющего адгезию одновременно к (со)полиолефинам и полярным (со)полимерам, при этом термостойкий слой, выполненный из алифатических (со)полиамидов, содержит не менее 15% по меньшей мере одного преимущественно алифатического сополиамида с температурой плавления не выше 205°С. Способ включает стадии соэкструзии, двухосной вытяжки, термофиксации и сматывания готовой пленки в рулон, при этом степень поверхностного растяжения при двухосной вытяжке составляет не менее 8 и стадия термофиксации сопровождается линейной релаксацией с усадкой хотя бы в одном из направлений, включая продольное (машинное) и поперечное направление более чем на 25% и поверхностной релаксацией с усадкой более чем на 40%. Изобретение обеспечивает создание пленки, которая может быть использована для термоформования глубокой вытяжкой в жестких условиях, при этом изготовленные из нее формованные изделия обладают необходимой механической надежностью. 2 н. и 18 з.п. ф-лы, 2 ил., 3 табл., 7 пр. Подробнее
Дата
2017-09-29
Патентообладатели
"Общество с ограниченной ответственностью ""Производственно-коммерческая фирма ""Атлантис-Пак"" "
Авторы
Голянский Борис Владимирович , Верин Сергей Владимирович , Коструб Владимир Владимирович , Бирюков Вадим Юрьевич , Бурыкин Игорь Владимирович
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ НАНОКОМПОЗИЦИОННЫХ МАТЕРИАЛОВ / RU 02657089 C1 20180608/
Открыть
Описание
Изобретение относится к области получения нанокомпозиционных полимерных материалов с улучшенными эксплуатационными характеристиками, а именно к радиационно-обработанным полимерным композиционным материалам антифрикционного и уплотнительного назначения на основе фторопластов. Получение полимерных нанокомпозиционных материалов включает механообработку порошка политетрафторэтилена, диспергирование наночастиц, дозирование наночастиц в концентрациях не более 1%, смешивание наночастиц с порошком политетрафторэтилена в смесителе. Далее осуществляют изготовление заготовок нанокомпозита из полученной смеси. Полученные заготовки помещают в камеру, где создается бескислородная среда. Затем заготовки нагревают до температуры выше температуры плавления кристаллической фазы со скоростью не более 60°С/час. Далее проводят обработку заготовок нанокомпозита ионизирующим излучением - тормозным гамма-излучением импульсного линейного ускорителя электронов при скорости облучения от 0-1000 Гр/сек, причем облучение проходит до поглощенной дозы 0,5-500 кГр с понижением температуры изделия в процессе обработки не более 0,5 град/10 кГр. После прекращения облучения осуществляют термообработку в режиме нагрев/охлаждение в температурном диапазоне от кристаллизации обработанного полимера до 380°С для нормализации и стабилизации свойств. Далее осуществляют охлаждение заготовок до комнатной температуры со скоростью не более 60°С/час. Изобретение обеспечивает получение композиционных материалов с улучшенными физико-механическими свойствами. 5 з.п. ф-лы, 3 табл. Подробнее
Дата
2017-09-21
Патентообладатели
Слесаренко Сергей Витальевич
Авторы
Слесаренко Сергей Витальевич , Арсентьев Михаил Александрович
Модифицированная полимерная композиция и смесь стабилизаторов для её изготовления / RU 02678593 C1 20190130/
Открыть
Описание
Изобретение относится к модифицированной полимерной композиции. Описана смесь стабилизаторов для модификации полимера на олефиновой основе, где указанный полимер на олефиновой основе выбран из группы, состоящей из полиэтилена, полипропилена и их комбинации, включающая: по меньшей мере один органический фосфорсодержащий антиоксидант, представленный формулой, выбранной из группы, состоящей из формул (1), (2), (3), (4), (5), (6), (7) и (8) и по меньшей мере одну серосодержащую карбоксилатную соль, причем в случае, когда по меньшей мере один органический фосфорсодержащий антиоксидант представлен формулой, выбранной из группы, состоящей из формул (2), (3), (4), (5), (6), (7) и (8), указанная по меньшей мере одна серосодержащая карбоксилатная соль представлена формулой, выбранной из группы, состоящей из формул (9), (10), (11) и (12); а в случае, когда по меньшей мере один органический фосфорсодержащий антиоксидант представлен формулой (1), указанная по меньшей мере одна серосодержащая карбоксилатная соль представлена формулой, выбранной из группы, состоящей из формул (10) и (12). Также описана модифицированная полимерная композиция, включающая полимер на олефиновой основе, выбранный из полиэтилена, полипропилена и их комбинации; и вышеописанную смесь стабилизаторов. Технический результат – обеспечение повышенной устойчивости модифицированной полимерной композиции к изменению окраски и индекса плавления, обеспечение стабильности при обработке полимерной композиции, и также придание ей удовлетворительных физических свойств. 2 н. и 10 з.п. ф-лы, 39 пр., 5 табл. Подробнее
Дата
2017-08-14
Патентообладатели
ФДС, ЛИС КЕМИКАЛ ИНДАСТРИ КО., ЛТД.
Авторы
ВАН Цзень-Фу , ЧЭНЬ Чень-Кай , ЛИ Кунь-Чан
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ МАТЕРИАЛОВ / RU 02669841 C1 20181016/
Открыть
Описание
Изобретение относится к радиационной химии и химии высоких энергий по получению, с помощью терморадиационной обработки заготовок, полимерных материалов с улучшенными эксплуатационными характеристиками, в частности политетрафторэтилена (ПТФЭ) и других марок фторопластов, используемых в различных областях промышленности. В частности, касается обработки заготовок высокоэнергетическим ионизирующим излучением при температуре строго выше температуры плавления кристаллической фазы полимера в бескислородной среде. Обработку осуществляют с помощью импульсного линейного ускорителя электронов, генерирующего ионизирующее излучение, до поглощенной дозы 0-500 кГр. В процессе облучения температуру полимера понижают не более 0,5°С/10 кГр, а после обработки ионизирующим излучением полимер подвергают термообработке. Для обработки используют альфа-излучение, гамма-излучение, электронное излучение, облучение протонами и нейтронами с высокими энергиями, излучение от природных источников. Способ обработки обеспечивает повышение физико-механических свойств материала с обеспечением их постоянства и программируемости физико-механических характеристик. 7 з.п. ф-лы. Подробнее
Дата
2017-08-09
Патентообладатели
Слесаренко Сергей Витальевич
Авторы
Слесаренко Сергей Витальевич , Арсентьев Михаил Александрович
ЛАМИНИРОВАННАЯ ЗАГОТОВКА ТОРЦОВ КОНСЕРВНЫХ БАНОК С ПОВЫШЕННОЙ ТЕМПЕРАТУРОЙ ОТЖИГА / RU 02717513 C1 20200323/
Открыть
Описание
Группа изобретений относится к металлообработке, в частности к ламинированию и предварительной обработке металлических полос. Ламинированная металлическая полоса содержит ламинированное полимерное покрытие на обращенной внутрь стороне и лаковое покрытие на обращенной наружу стороне. Заготовку торцов консервных банок формируют путем выполнения процесса отжига ламинированной металлической полосы, при этом металлическую полосу нагревают до температуры отжига, большей точки плавления полимера, в течение времени, достаточного для приведения полимера в аморфное состояние. В некоторых случаях полимерная пленка, ламинированная на металлическую полосу, представляет собой пленку из полиэтилентерефталата. Группа изобретений позволяет получить алюминиевую заготовку торцов консервных банок, которая включает в себя ламинированное аморфное полимерное покрытие, имеющее низкое шелушение, низкое помутнение и высокую характеристику устойчивости при испытаниях уксусной кислотой. 4 н. и 31 з.п. ф-лы, 18 ил. Подробнее
Дата
2017-05-05
Патентообладатели
НОВЕЛИС ИНК.
Авторы
ШПАН Петер , ПРИНЦХОРН Генрих , КАМП Николас С. , РУПАРЕЛИЯ Дирен Бупатлал