Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
Способ и установка адсорбционной осушки и очистки природного газа / RU 02717052 C1 20200317/
Открыть
Описание
Изобретение относится к газопереработке и может быть использовано в газовой промышленности. Способ и установка адсорбционной осушки и очистки природного газа от серосодержащих компонентов после дожимной компрессорной станции перед подачей природного газа в магистральный газопровод включают циклически повторяющиеся стадию адсорбционной осушки и очистки природного газа, стадию регенерации адсорбента и стадию охлаждения адсорбента, при этом часть очищенного природного газа после использования на стадии охлаждения адсорбента подвергают рекуперативному теплообмену, нагреву в печи и далее используют в качестве газа регенерации на стадии регенерации адсорбента, после стадии регенерации адсорбента газ регенерации, содержащий десорбированные примеси, охлаждают в первом блоке адсорбционной осушки и очистки природного газа и направляют во второй дополнительный блок адсорбционной очистки газа регенерации, где циклически реализуют стадию адсорбции примесей, стадию регенерации адсорбента и стадию охлаждения адсорбента, при этом на стадии адсорбции примесей из газа регенерации первого блока адсорбционной осушки и очистки природного газа извлекают десорбированные примеси, очищенный газ регенерации возвращают на рецикл в очищаемый природный газ, а стадию регенерации адсорбента осуществляют горячим очищенным природным газом в две фазы: во время первой фазы газ регенерации с пиковым количеством десорбированных примесей сбрасывают на факел, во время второй фазы газ регенерации направляют на рецикл в очищаемый природный газ – в обоих случаях газ регенерации предварительно охлаждают и отделяют конденсат. Изобретение решает задачу разработки способа и установки адсорбционной осушки и очистки природного газа с уменьшением расхода природного газа, используемого для регенерации адсорбента, и увеличением таким образом выхода товарного природного газа. 2 н. и 12 з.п. ф-лы, 4 ил., 3 табл. Подробнее
Дата
2019-12-30
Патентообладатели
Мнушкин Игорь Анатольевич
Авторы
Мнушкин Игорь Анатольевич
БИПОЛЯРНАЯ ПЛАСТИНА ДЛЯ СТЕКОВ ТОПЛИВНЫХ ЭЛЕМЕНТОВ / RU 02723294 C1 20200609/
Открыть
Описание
Изобретение относится к электрохимической энергетике, в частности к компонентам топливных элементов (ТЭ) с жидкостным, испарительным (т.е. с фазовым переходом хладагента из жидкой фазы) или газовым охлаждением, использующих полимерную мембрану, водород и кислород в качестве электролита, топлива и окислителя соответственно. Биполярная пластина для стеков топливных элементов с жидкостным охлаждением состоит из двух одинаковых по размерам и конфигурации листовых элементов, симметричных относительно своих центров, каждый их которых содержит активную область, систему газовых коллекторов и коллекторов для охлаждающего агента, а также распределительную зону охлаждающего агента, газовые распределительные зоны, области сообщения газовых коллекторов с газовой распределительной зоной с перфорацией и области сообщения газовых коллекторов с газовой распределительной зоной без перфорации. Активные области выполнены гофрированными с образованием на обеих сторонах каждого из листовых элементов системы продольных зигзагообразных распределительных каналов. Один из листовых элементов, составляющих биполярную пластину, установлен с поворотом по отношению к другому на угол 180° относительно своей продольной оси симметрии. На поверхностях распределительных зон и областей сообщения выполнены конструкционные выступы. Пластина выполнена с контурной лазерной сваркой. Коллекторы для охлаждающего агента размещены на противоположных продольных концах каждого листового элемента пластины. Техническим результатом предложенного решения является упрощение конструкции биполярной пластины и процесса ее изготовления при одновременном улучшении ее эксплуатационных характеристик. 4 з.п. ф-лы, 7 ил. Подробнее
Дата
2019-12-30
Патентообладатели
"Акционерное общество ""Группа компаний ИнЭнерджи"" "
Авторы
Сивак Александр Владимирович , Мельников Алексей Петрович , Левченко Егор Александрович , Рычков Андрей Александрович
Способ безокислительной термической обработки изделий из аустенитной коррозионно-стойкой стали / RU 02723871 C1 20200617/
Открыть
Описание
Изобретение относится к области безокислительной термической обработки изделий из коррозионно-стойкой аустенитной стали, используемых в качестве конструкционных элементов атомных реакторов. В вакуумную камеру загружают садку из обезжиренных изделий и проводят вакуумирование камеры с садкой. Остаточное давление после вакуумирования камеры составляет не более 8×10-5 мм рт.ст., а натекание составляет менее 5,00×10-3 л × мм рт.ст./с в течение не менее 24 с. Нагревают садку до температуры аустенизации, составляющей 920-970°С, установленным в камере индуктором. Выдерживают садку при этой температуре и осуществляют последующее охлаждение. Обеспечивается получение изделий из аустенитных сталей без окисных пленок, в том числе цветов побежалости, на поверхности, а также требуемый уровень механических свойств и стойкость к межкристаллитной коррозии. 1 ил. Подробнее
Дата
2019-12-30
Патентообладатели
"Акционерное общество ""Чепецкий механический завод"" "
Авторы
Вдовенко Ирина Николаевна , Наговицын Павел Геннадьевич , Мильчаков Илья Владимирович
Сдобное овсяное печенье на растительных маслах и молочной сыворотке / RU 02723961 C1 20200618/
Открыть
Описание
Изобретение относится к кондитерской отрасли. Предложен способ производства сдобного овсяного печенья, предусматривающий приготовление белок-полисахаридной смеси (БПС) из агара, альгината натрия, натрий-карбоксиметилцеллюлозы (Na-КМЦ) и сухой молочной сыворотки, добавление к смеси горячей воды с температурой 60-90°С, перемешивание и набухание смеси в течение 40-60 минут, сбивание БПС, введение жидкого растительного масла и сбивание в течение 8-10 минут с получением эмульсии, после чего вводят в полученную эмульсию вкусоароматические добавки, представляющие собой по меньшей мере одно из изюма, повидла, патоки и корицы, и смесь сахарозаменителей из изомальтита, сорбита и ксилита и тщательно перемешивают, в полученную смесь вносят овсяную муку, муку рисовую, смесь картофельного и кукурузного крахмалов, соль, соду и замешивают тесто, полученное тесто направляют на формование, выпечку и последующее охлаждение, при следующем соотношение исходных компонентов, мас. ч.: мука овсяная 145-175; мука рисовая 30-120; крахмал картофельный 120-215; крахмал кукурузный 110-175; изомальтит 220-280; сорбит 27-35; ксилит 27-35; жидкое растительное масло 130-200; соль 3,5-4,5; сода 5-8; вкусоароматические добавки 60-100; сухая молочная сыворотка 15-35; альгинат натрия 0,20-0,50; агар 0,20-0,50; натрий-карбоксиметилцеллюлоза 0,18-0,36; вода для БПС 120-170. При этом растительное масло выбирают из подсолнечного, кунжутного, рапсового, льняного, масла грецкого ореха и их смесей. Изобретение направлено на получение сдобного овсяного печенья диабетической направленности и для людей с целиакией на жидких растительных маслах при сохранении традиционных органолептических характеристик. 1 з.п. ф-лы, 1 ил., 3 табл., 9 пр. Подробнее
Дата
2019-12-30
Патентообладатели
Васькина Валентина Андреевна
Авторы
Васькина Валентина Андреевна , Бабаева Дарья Сергеевна , Соколова Надежда Дмитриевна , Саломатов Алексей Сергеевич , Щербакова Елена Ивановна , Двоеглазова Анастасия Александровна , Дубцова Галина Николаевна , Мухамедиев Шамиль Ахмедович
Сплав на основе титана и способ его обработки для создания внутрикостных имплантатов с повышенной биомеханической совместимостью с костной тканью / RU 02716928 C1 20200317/
Открыть
Описание
Изобретение относится к металлургии, а именно к биосовместимым сплавам с механическим поведением, близким к поведению костной ткани человека, и может быть использован для несущих конструкций медицинских внутрикостных имплантатов. Сверхупругий сплав на основе титана содержит, ат.%: цирконий 18-42, ниобий 8-15, титан остальное, при этом сплав имеет наносубзеренную структуру и высокотемпературную метастабильную β-фазу, находящуюся в предмартенситном состоянии. Способ термомеханической обработки сверхупругого сплава на основе титана включает гомогенизационный отжиг при 800-1000°С в течение 60-120 минут, холодную пластическую деформацию со степенью истинной деформации е=0,25-0,55, последеформационный отжиг при 500-600°С в течение 30-60 минут и охлаждение в воде. Сплав характеризуется высокой биосовместимостью с механическим поведением, близким к поведению костной ткани, а также высокой долговечностью. 2 н.п. ф-лы, 1 ил., 2 пр. Подробнее
Дата
2019-12-27
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский технологический университет ""МИСиС"" "
Авторы
Конопацкий Антон Сергеевич , Дубинский Сергей Михайлович , Шереметьев Вадим Алексеевич , Прокошкин Сергей Дмитриевич , Браиловский Владимир Иосифович
СПОСОБ ДЕЗАКТИВАЦИИ ПОВЕРХНОСТНО ЗАГРЯЗНЕННЫХ ИЗДЕЛИЙ ИЗ МЕТАЛЛИЧЕСКИХ СПЛАВОВ ИЛИ ИХ ФРАГМЕНТОВ / RU 02724627 C1 20200625/
Открыть
Описание
Изобретение относится к способам химической дезактивации металла с поверхностным загрязнением радионуклидами. Способ дезактивации поверхностно загрязненных изделий из металлических сплавов или их фрагментов, заключается в нанесении на дезактивируемую поверхность порошкового реагента, содержащего калий, натрий и серу, последующем нагреве поверхности, ее охлаждении путем обработки поверхности жидким азотом в количестве не менее 260 г на 1 кг обрабатываемой поверхности и очистке поверхности от образовавшейся окалины. Изобретение позволяет предотвратить улетучивание цезия в процессе дезактивации, за счет обеспечения резкого охлаждения МРАО после стадии нагрева. 1 табл. Подробнее
Дата
2019-12-25
Патентообладатели
Тихомиров Вячеслав Евгеньевич
Авторы
Тихомиров Вячеслав Евгеньевич , Тихомиров Денис Вячеславович
УСТАНОВКА НИЗКОТЕМПЕРАТУРНОГО ФРАКЦИОНИРОВАНИЯ ДЛЯ КОМПЛЕКСНОЙ ПОДГОТОВКИ ГАЗА И ПОЛУЧЕНИЯ СПГ / RU 02717668 C1 20200324/
Открыть
Описание
Изобретение относится к оборудованию для промысловой подготовки природного газа с одновременным получением сжиженного природного газа (СПГ) и может быть использовано в газовой промышленности. Предложена установка, включающая входной и промежуточный сепараторы, рекуперативный теплообменник, фракционирующую колонну, теплообменник, компрессор, первый и второй холодильники, детандер, редуцирующие устройства, сепаратор СПГ и блок фракционирования. При работе установки сырой газ разделяют во входном сепараторе на углеводородный конденсат и газ, который разделяют на два потока, первый подают на охлаждение в нижнюю тепломассообменную секцию колонны, смешивают со вторым потоком, охлажденным в рекуперационном теплообменнике, разделяют в сепараторе на углеводородный конденсат и газ, который редуцируют и подают в колонну совместно с редуцированными углеводородными конденсатами. С низа колонны деметанизированный конденсат подают в блок фракционирования, из которого выводят жидкие продукты, при этом в блок в качестве хладагента подают часть подготовленного газа. С верха колонны выводят сухой отбензиненный газ, разделяют его на поток технологического газа, который редуцируют в детандере и нагревают в первом холодильнике, и на поток продукционного газа, который нагревают в теплообменнике, сжимают, охлаждают во втором холодильнике, теплообменнике, первом холодильнике, редуцируют и разделяют на СПГ и газ, который смешивают с технологическим газом с образованием подготовленного газа, который в качестве хладагента подают сначала в верхнюю теплообменную секцию колонны, затем в рекуперационный теплообменник и выводят. Технический результат - увеличение выхода углеводородов C2+, увеличение выхода СПГ и исключение использования сторонних источников низкотемпературного холода. Подробнее
Дата
2019-12-24
Патентообладатели
Курочкин Андрей Владимирович
Авторы
Курочкин Андрей Владимирович
Способ получения объёмных наноструктурированных полуфабрикатов из сплавов с памятью формы на основе никелида титана (варианты) / RU 02717764 C1 20200325/
Открыть
Описание
Изобретение относится к металлургии, а именно к получению прутков из сплава с памятью формы на основе никелида титана (Ti-Ni), и может быть использовано при производстве объемных и длинномерных полуфабрикатов из сплавов на основе никелида титана с памятью формы. Способ получения объемных наноструктурированных прутков из сплавов с памятью формы на основе никелида титана включает равноканальное угловое прессование горячекатаной заготовки после закалки в интервале температур 700-800°С с охлаждением в воде. Равноканальное угловое прессование проводят в квазинепрерывном режиме в интервале температур 350-450°С за 5-7 проходов с углом пересечения каналов 110-120°, далее осуществляют последеформационный отжиг при температуре 350-450°С в течение 1-2 часов. После равноканального углового прессования может быть проведена ротационная ковка в интервале температур 350-400°С с единичными обжатиями 1-15% до требуемого конечного диаметра заготовки. Обеспечивается повышение механических и функциональных свойств полуфабрикатов из Ti-Ni путем формирования в них УМЗ структуры: смешанной нанокристаллической и наносубзеренной после РКУП и после деформационного отжига, смешанной наносубзеренной и субмикрокристаллической после равноканального углового прессования, ротационной ковки и последеформационного отжига. 2 н.п. ф-лы, 1 табл., 2 пр. Подробнее
Дата
2019-12-24
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский технологический университет ""МИСиС"" "
Авторы
Андреев Владимир Александрович , Юсупов Владимир Сабитович , Карелин Роман Дмитриевич , Прокошкин Сергей Дмитриевич , Хмелевская Ирина Юрьевна , Комаров Виктор Сергеевич , Перкас Михаил Маркович
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО НЕПРЕРЫВНО ОТОЖЖЕНОГО ЛИСТОВОГО ПРОКАТА ИЗ IF-СТАЛИ / RU 02721681 C1 20200522/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству холоднокатаного проката из IF-сталей, который используют в автомобильной промышленности. Для обеспечения уровня свойств, соответствующих сталям марок DC05, DC06 и DC07 по EN 10130, то есть создания кассетной технологии, при сохранении высоких показателей пластичности и штампуемости осуществляют выплавку стали, содержащей, мас. %: С 0,002-0,006, Si 0,005-0,020, Mn - 0,08-0,13, Al - 0,03-0,06, Ti - 0,03-0,08, Fe и неизбежные примеси - остальное, разливку, горячую прокатку с температурой конца прокатки 900-930°С, травление, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в агрегате непрерывного отжига, при этом рекристаллизационный отжиг ведут путем нагрева до 830-840°С для проката с минимальным значением относительного удлинения 39-40% и до 850-860°С для проката с минимальным значением относительного удлинения 42-44%, выдержки и охлаждения до температуры перестаривания, причем температуру начала перестаривания назначают в соответствии с зависимостью Тп.н.≤[920-12,5хδтр..], где Тп.н. - температура начала перестаривания, °С, δтр. - требуемая минимальная величина относительного удлинения, %; 920 и 12,5 - эмпирические коэффициенты, и проводят дрессировку. 3 табл. Подробнее
Дата
2019-12-23
Патентообладатели
"Федеральное государственное унитарное предприятие ""Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина"" "
Авторы
Родионова Ирина Гавриловна , Карамышева Наталия Анатольевна , Зайцев Александр Иванович , Колдаев Антон Викторович , Краснянская Ирина Алексеевна , Степанов Алексей Борисович
Хромсодержащий катализатор жидкофазного синтеза метанола и способ его получения / RU 02721547 C1 20200520/
Открыть
Описание
Изобретение относится к химической промышленности, а именно к производству гетерогенных катализаторов процесса жидкофазного синтеза метанола, и может быть применено на предприятиях химической промышленности для получения метанола, который используется в качестве растворителя, экстрагента и сырья для синтеза формальдегида, сложных эфиров органических и неорганических кислот и добавок к топливу. Хромсодержащий катализатор жидкофазного синтеза метанола содержит сверхсшитый полистирол в качестве носителя и активный металл. Согласно изобретению в качестве активного металла используется хром, при этом содержание хрома в катализаторе составляет от 4 до 6 мас.%, а содержание сверхсшитого полистирола - 94÷96 мас.%. Используют сверхсшитый полистирол с площадью внутренней поверхности 950÷1050 м2/г. Способ получения хромсодержащего катализатора жидкофазного синтеза метанола включает обработку сверхсшитого полистирола раствором соли активного металла в тетрагидрофуране, дистиллированной воде и метаноле, приготовленном под током азота, высушивание, продувку азотом с расходом 30±5 мл/мин в течение 30±5 мин, продувку водородом с расходом 30±5 мл/мин в течение 30±5 мин, восстановление водородом, охлаждение до комнатной температуры и продувку азотом с расходом 30±5 мл/мин в течение 30±5 мин. Согласно изобретению в качестве раствора соли активного металла используют раствор ацетата хрома концентрацией 3,6÷3,7 мас.%, обработку носителя раствором ацетата хрома осуществляют сначала смешиванием в течение 10±0,5 мин, далее - с использованием ультразвука с частотой 60±0,5 кГц, мощностью 75±1 Вт в течение 2±0,1 мин, высушивание проводится при 105±5°C в течение 1±0,1 ч, а восстановление водородом проводится при 350±10°С с расходом 10±1 мл/мин в течение 3±0,1 ч. Технический результат изобретения – повышение активности, селективности и операционной стабильности гетерогенного катализатора в реакции жидкофазного синтеза метанола. 2 н. и 1 з.п. ф-лы, 26 пр. Подробнее
Дата
2019-12-18
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Тверской государственный университет"" "
Авторы
Тихонов Борис Борисович , Матвеева Валентина Геннадьевна , Косивцов Юрий Юрьевич , Манаенков Олег Викторович , Григорьев Максим Евгеньевич , Долуда Валентин Юрьевич
Способ предварительной осушки попутного нефтяного газа / RU 02718936 C1 20200415/
Открыть
Описание
Предложение относится к нефтегазодобывающей промышленности, а именно к способам по осушке попутного нефтяного газа. Способ предварительной осушки попутного нефтяного газа, включающий подачу потока высоконапорного попутного газа в корпусе с соплом, его изоэнтальпийное расширение и охлаждение при течении в сопле, конденсацию компонентов при охлаждении, отделение конденсата от газовой фазы, повышение давления газа путем торможения, причем исходный газ также охлаждают при теплообмене с хладагентом. Предварительно определяют компонентный состав попутного газа и температуру кипения наиболее низкотемпературных компонентов и/или воды, находящейся в попутном газе, которые являются хладагентом. Определяют давление кипения низкотемпературных компонентов и/или воды при температуре поступающего газа. Из основного потока газа выделяют и направляют в корпус через сопло часть потока газа, достаточную для обеспечения высоконапорного потока через сопло, в котором скорость потока обеспечивает поддержание давления для точки кипения низкотемпературных компонентов и/или воды в корпусе, вставленном в камеру охлаждения, в которой происходит отделение конденсата от газовой фазы основного потока газа для отбора конденсата в основной конденсатосборник из нижней точки, а осушенного газа - в следующую ступень обработки. Обеспечивают встречные потоки газа в корпусе и камере охлаждения, на выходе которой производят повышение давления газа путем торможения в объемной камере, сообщенной с дополнительным конденсатосборником для сброса образовавшегося конденсата из объемной камеры и газа, проходящего через корпус. Из дополнительного конденсатосборника конденсат периодически направляют в основной конденсатосборник, а газ - откачивают струйным насосом, установленным перед камерой охлаждения после разделения потока. В камере охлаждения поддерживают температуру ниже температуры насыщения пара при делении перекачки, но выше температуры замерзания воды. Предлагаемый способ предварительной осушки попутного нефтяного газа прост в использовании и не требует дополнительных реагентов для реализации. 1 ил. Подробнее
Дата
2019-12-17
Патентообладатели
Публичное акционерное общество "Татнефть" имени В.Д. Шашина
Авторы
Гаврилов Алексей Владимирович , Амеров Ринат Рифович , Кашапов Айрат Аксанович
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО АКТИВИРОВАННОГО УГЛЯ / RU 02722542 C1 20200601/
Открыть
Описание
Изобретение относится к производству активированных углей. Предложен способ получения активированного угля, включающий смешение до однородной массы тонкоизмельченных раздельно каменного угля и каменноугольного пека, формование угольно-пековой смеси, дробление и рассев с получением заданной фракции, термическую обработку гранул в присутствии кислорода воздуха при температуре 300-350°С, выдержку при конечной температуре 3-3,5 часа, карбонизацию при температуре 600-650°С, парогазовую активацию при температуре 920-950°С до степени обгара 30-35%, охлаждение гранул и их измельчение до размера частиц менее 100 мкм. Технический результат заключается в получении порошкового активированного угля с высокими сорбционными свойствами (адсорбционная способность по йоду не менее 80%). 1 з.п. ф-лы, 1 табл., 2 пр. Подробнее
Дата
2019-12-16
Патентообладатели
"Общество с ограниченной ответственностью ""Активные Угли"", ООО ""Активные Угли"" "
Авторы
Королев Николай Владимирович
Статор электрической машины с трубчатой системой охлаждения / RU 02719287 C1 20200417/
Открыть
Описание
Изобретение относится к электротехнике. Техническим результатом является повышение надежности, энергоэффективности, минимизация тепловыделений обмотки статора и, как следствие, повышение КПД электрической машины. Статор электрической машины с трубчатой системой охлаждения содержит магнитопровод с уложенными в нем обмоткой с проводниками и силиконовыми трубками. Обмотка статора расположена внутри силиконовых трубок с возможностью омывания хладагентом поверхности проводников. Силиконовые трубки выполняют также функции пазовой изоляции. В области лобовых частей обмотки силиконовые трубки присоединены к тройникам с возможностью прохождения хладагента через отверстия. Один из тройников имеет отверстие, через которое герметично выведены проводники обмотки. 2 ил. Подробнее
Дата
2019-12-13
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Уфимский государственный авиационный технический университет"" "
Авторы
Исмагилов Флюр Рашитович , Вавилов Вячеслав Евгеньевич , Бекузин Владимир Игоревич , Ямалов Ильнар Илдарович , Фаррахов Данис Рамилевич , Минияров Айбулат Халяфович , Жарков Евгений Олегович , Пермин Данила Юрьевич
Электрод с хвостовиком для контактной точечной сварки / RU 02723853 C1 20200617/
Открыть
Описание
Изобретение может быть использовано для изготовления арматурной сетки контактной точечной сваркой. Верхняя часть электрода выполнена с уширением, с нижнего торца которого образована цилиндрическая полость, в которой с помощью болтов закреплена рабочая часть электрода. На дне упомянутой полости выполнены поперечные закрытые с краев канавки, разделенные перегородками, образующие зону циркуляции хладагента. Канавки, перегородки с проемами выполнены с возможностью направления потока хладагента к центральной канавке. В центральную канавку открыта продольная полость верхней части электрода, предназначенная для отвода нагретого хладагента, при этом зона циркуляции хладагента загерметизирована уплотнительным элементом. Сборный электрод обеспечивает симметричное и равномерное охлаждение его торца, что снижает износ и повышает стойкость электрода. 1 ил. Подробнее
Дата
2019-12-12
Патентообладатели
Кожокин Тимофей Иванович
Авторы
Кожокин Тимофей Иванович
Электрическая машина многороторная с комбинированной системой охлаждения / RU 02717838 C1 20200326/
Открыть
Описание
Изобретение относится к электротехнике. Технический результат заключается в обеспечении повышения мощности и равномерности распределения вращающего момента на валу, высокой надежности и эффективности за счет комбинированной и реверсивной системы охлаждения. Электрическая машина содержит корпус. Подвижные и неподвижные активные части установлены раздельно в общем корпусе и на общем валу. Точки подключения возбуждающих обмоток каждой неподвижной активной части расположены равномерно по окружности относительно оси вала. Между подвижными активными частями установлены конструктивные узлы, поддерживающие полый вал. Для реверсивного и раздельного охлаждения торцевых сторон активных частей жидкой и газообразной охлаждающими средами в конструкции двигателя выполнены качающие узлы. 10 ил. Подробнее
Дата
2019-12-10
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Башкирский государственный аграрный университет"" "
Авторы
Светомиров Данил Николаевич
Способ получения противозадирной присадки / RU 02713913 C1 20200211/
Открыть
Описание
Настоящее изобретение относится к способу получения противозадирной присадки, которая может быть использована в смазочных маслах, предпочтительно в трансмиссионных маслах. Предложенный способ включает стадии: 1) осернения тетрамера пропилена при температуре 125-145°С с пропусканием через реакционную смесь газообразного азота в присутствии окиси кальция и N-трет-бутил-2-бензотиозолилсульфенамида в качестве катализаторов; 2) охлаждения реакционной смеси; 3) добавления трет-бутиламина в реакционную смесь с последующим повышением температуры реакционной смеси и 4) очистки реакционной смеси. Технический результат предложенного способа заключается в том, что при его осуществлении требуется меньшее число стадий для получения готового продукта, при этом данный способ позволяет снизить температуру и время проведения реакции осернения, снизить объем отходов производства и упростить процесс очистки сточных вод, снизить количество высокомолекулярных коррозионно-агрессивных по отношению к цветным металлам соединений в присадке, что придает присадке новые свойства, вследствие которых масла с получаемой присадкой обладают превосходными антикоррозионными и антиокислительными свойствами. 8 з.п. ф-лы, 6 табл., 9 пр. Подробнее
Дата
2019-12-04
Патентообладатели
Павлова Виктория Александровна , Александрина Светлана Аркадьевна
Авторы
Павлова Виктория Александровна , Александрина Светлана Аркадьевна
Способ фиксации метаэпифизарных переломов трубчатых костей кисти / RU 02718270 C1 20200401/
Открыть
Описание
Изобретение относится к медицине, а именно к травматологии и ортопедии, может быть использовано при оперативном лечении поперечных, косых, внутрисуставных, спиральных и других нестабильных переломов трубчатых костей кисти. Для остеосинтеза используют спицу, часть которой перед введением в кость подвергают обжигу с последующим охлаждением до температуры, сохраняющей пластичность материала спицы, но не разрушающей костную ткань. Обработке подвергают заданную длину части спицы, определяемую с учетом того, что после установки обработанной части в кость, она должна выступать наружу с двух сторон. После чего спицу необожженным концом вводят в кость, проводят через отломки и линию перелома, располагают обработанную часть в кости. Скусывают необожженную часть спицы, а концы обработанной части спицы, выступающие из кости, загибают. Способ обеспечивает раннее восстановление полной функции кисти и стабильную фиксацию области метаэпифизарных переломов трубчатых костей кисти за счет остеосинтеза спицей, сохраняющей свою пластичность. 2 пр., 2 ил. Подробнее
Дата
2019-12-04
Патентообладатели
Егиазарян Карен Альбертович
Авторы
Егиазарян Карен Альбертович , Коршунов Вячеслав Федорович , Казаков Кирилл Алексеевич
ВЕНТИЛЬНО-ИНДУКТОРНЫЙ ДВИГАТЕЛЬ / RU 02720064 C1 20200423/
Открыть
Описание
Изобретение относится к области электротехники и может быть использовано в качестве двигателей транспортных средств. Технический результат - повышение эффективности охлаждения двигателя, снижение его массы. Вентильно-индукторный двигатель содержит электронную систему управления, два зубчатых статора с фазными обмотками на зубцах, два зубчатых пакета ротора, закрепленных на общем валу и смещенных относительно друг друга на 45°, и систему охлаждени. Система охлаждения включает металлические пластины, размещенные на торцевой поверхности статоров и плотно прилегающие к ней, а также размещенные на пластинах трубы для подачи охлаждающей жидкости, прилегающие к обмоткам зубцов статора. 7 з.п. ф-лы, 1 ил. Подробнее
Дата
2019-11-26
Патентообладатели
Чукреев Вячеслав Авазович
Авторы
Чукреев Вячеслав Авазович
Способ получения паяного соединения алюмооксидной керамики с титановым сплавом ВТ1-0 / RU 02717446 C1 20200323/
Открыть
Описание
Изобретение может быть использовано для создания паяного соединения алюмооксидной керамики со сплавом ВТ1-0 в медицине, в частности для пайки деталей эндопротеза тазобедренного сустава. Сборку нагревают в условиях вакуума не хуже (1÷5)×10-5 торр в вакуумной печи со скоростью нагрева не менее 20°С/мин и охлаждении со скоростью не более 5°С/мин. Перед пайкой на алюмооксидную керамику наносят покрытие титана толщиной 150-300 нм и отжигают в вакууме при температуре 1380-1420°С в течение 1-2 часов. Сборку нагревают в вакуумной печи до температуры пайки 940-960°С с выдержкой 15-20 мин и охлаждают до температуры 600-650°С. Охлаждение до комнатной температуры проводят со скоростью остывания печи. В качестве припоя используют быстрозакаленный ленточный припой на основе сплава титана и циркония при следующем соотношении компонентов припоя, мас.%: цирконий 38-42, кобальт 25-28, титан - остальное. Техническим результатом является снижение степени рекристаллизации сплава ВТ1-0 и деградации его механических свойств после пайки. 2 з.п. ф-лы, 7 ил., 2 пр. Подробнее
Дата
2019-11-25
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский ядерный университет ""МИФИ"" "
Авторы
Калин Борис Александрович , Федотов Иван Владимирович , Севрюков Олег Николаевич , Пахалюк Владимир Иванович , Немчинов Юрий Михайлович , Иванников Александр Александрович , Сучков Алексей Николаевич
СПОСОБ ПОЛУЧЕНИЯ ТЕТРАОКСИДА ДИАЗОТА / RU 02722307 C1 20200528/
Открыть
Описание
Изобретение относится к получению жидкого тетраоксида диазота (N2O4), применяемого в химической промышленности для получения нитритов, нитратов, в малотоннажных производствах органических и неорганических веществ, а также в ракетной технике в качестве окислителя ракетного горючего. Способ получения тетраоксида диазота включает термическое разложение азотной кислоты с последующим разделением тетраоксида диазота и азотной кислоты, охлаждение, конденсацию и ректификационную очистку тетраоксида диазота. Водный раствор азотной кислоты с концентрацией 55-99% в течение 0,2-1,5 с подвергают термическому разложению при температуре 250-350°С. Продукты разложения охлаждают со скоростью 180-250°С/с и выделяют тетраоксид диазота. Азотную кислоту возвращают в цикл. Изобретение позволяет получать тетраоксид азота с выходом 95-99%, упростить аппаратурное оформление процесса, исключив использование дорогостоящего оборудования, снизить энергозатраты за счет сокращения стадий процесса. 1 табл., 1 ил. Подробнее
Дата
2019-11-25
Патентообладатели
"Федеральное государственное унитарное предприятие ""Российский научный центр ""Прикладная химия"" "
Авторы
Ласкин Борис Михайлович , Мухортов Дмитрий Анатольевич , Тугай Алексей Иванович , Козлова Елена Викторовна , Зубрицкая Наталья Георгиевна