Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
Способ аддитивного изготовления объемных микроразмерных структур из наночастиц / RU 02723341 C1 20200609/
Открыть
Описание
Изобретение относится к аддитивной 3D-технологии изготовления объемных микроразмерных структур из наночастиц. Способ включает получение потока аэрозоля с наночастицами в потоке транспортного газа, нагрев аэрозоля в потоке транспортного газа с обеспечением получения наночастиц сферической формы требуемого размера, транспортировку полученного потока аэрозоля к головке с соплом, подачу в указанное сопло потока аэрозоля и защитного газа, фокусировку потока аэрозоля наночастиц, осаждение наночастиц из сфокусированного потока аэрозоля на подложку и спекание наночастиц. Используют наночастицы, полученные из металлов, металлоподобных соединений и полупроводников. Нагрев аэрозоля с наночастицами в потоке транспортного газа с обеспечением получения наночастиц сферической формы требуемого размера и спекание наночастиц на подложке проводят посредством по крайней мере одного источника лазерного излучения, длина волны которого соответствует возбуждению размерозависимого локализованного поверхностного плазмонного резонанса для модального значения спектра диаметров осаждаемых на подложку наночастиц. Обеспечивается уменьшение энергоемкости процесса и возможность применения термочувствительных подложек в пластиковой электронике. 3 з.п. ф-лы, 4 ил., 1 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Московский физико-технический институт "" "
Авторы
Иванов Виктор Владимирович , Ефимов Алексей Анатольевич , Хабаров Кирилл Михайлович , Тужилин Дмитрий Николаевич , Сапрыкин Дмитрий Леонидович
РЕГЕНЕРАЦИЯ КИСЛЫХ ХРОМАТНЫХ РАСТВОРОВ МЕТОДОМ МЕМБРАННОГО ЭЛЕКТРОЛИЗА / RU 02723177 C1 20200609/
Открыть
Описание
Изобретение относится к способу регенерации кислых хроматных растворов пассивации, осветления-пассивации, осветления реагентно-мембранно-электролизным методом. К отработанному раствору добавляют твердый гидроксид натрия или калия или их водные растворы с концентрацией 1-40% масс. для достижения рН раствора 4-10 для осаждения нерастворимых хроматов и/или гидроксидов тяжелых металлов. Осадки отделяют от обработанного раствора фильтрованием. Полученный фильтрат подвергают мембранному электролизу, для осуществления которого фильтрат направляется в анодное пространство с нерастворимым анодом двухкамерного мембранного электролизера с катионообменной мембраной, где в католите находится катод и раствор гидроксида натрия или калия. По достижении номинальных значений в анолите концентрации бихромата натрия, серной или смеси серной и азотной кислот, соответствующих свежему раствору пассивации, осветления-пассивации или осветления, электролиз прекращают. Технический результат заключается в повышении степени очистки и скорости процесса регенерации, а также рецикле применяемых химикатов. 3 з.п. ф-лы. Подробнее
Дата
2019-11-26
Патентообладатели
Тураев Дмитрий Юрьевич
Авторы
Тураев Дмитрий Юрьевич
Способ изготовления оптического фильтра на основе графена / RU 02724229 C1 20200622/
Открыть
Описание
Изобретение относится к области нанотехнологий, а именно к использованию новых материалов, таких, как композиты полимер-графен-золото и полимер-графен-серебро, полученных с использованием метода химического осаждения из паровой фазы (ХОПФ). Предложен способ изготовления оптического фильтра на основе графена, представляющего собой трехслойный композит, содержащий слой из полимера, слой из монослойного графена, синтезированный методом химического осаждения из паровой фазы (ХОПФ) на медной каталитической подложке и перенесенный на прозрачную полимерную поверхность, и слой из наночастиц металла. Слой монослойного графена синтезируют в смеси газов Ar/Н2/СН4 при атмосферном давлении и переносят на полимерную поверхность с помощью механического метода переноса на основе процесса термопрессования, с получением полимер-графенового композита. Слой из наночастиц металла напыляют на полученный полимер-графеновый композит методом лазерной абляции с использованием лазерных импульсов. Толщина покрытия полимер-графенового композита металлическими наночастицами прямо пропорциональна числу лазерных импульсов и определяется желаемым оптическим коэффициентом поглощения в соответствии с соотношением: K = 0,0001776 × х + 0,4944, причем K - коэффициент поглощения, х - количество лазерных импульсов. Осуществляют конфигурирование структуры покрытия полимер-графенового композита металлическими наночастицами с обеспечением поглощения электромагнитного излучения за счет эффекта плазмонного резонанса. Обеспечивается получение оптического фильтра на основе графена, позволяющего поглощать до 95% электромагнитного излучения за счет использования эффекта плазмонного резонанса. 4 з.п. ф-лы, 4 ил. Подробнее
Дата
2019-11-19
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук
Авторы
Смовж Дмитрий Владимирович , Бойко Евгений Викторович , Костогруд Илья Алексеевич , Маточкин Павел Евгеньевич
Способ подготовки поверхности подложки из алюмонитридной керамики под тонкоплёночную металлизацию / RU 02724291 C1 20200622/
Открыть
Описание
Изобретение относится к подготовке поверхности подложки из алюмонитридной керамики под тонкопленочную металлизацию. Техническим результатом изобретения является качественное формирование на подложках из керамики на основе нитрида алюминия систем металлизации, резисторов и т.п. элементов методами, используемыми традиционными методами для керамики на основе оксида алюминия. Указанный технический результат обеспечивается тем, что в способе тонкоплёночной металлизации подложек из алюмонитридной керамики, включающем очистку подложки, нанесение на нее вакуумным осаждением системы металлизации, первым слоем которой является металл, химически взаимодействующий с оксидом алюминия, а вторым медь, непосредственно перед напылением металлов, плазменной обработкой на поверхности подложки формируют слой α-Al2O3. Первым слоем металлизации предпочтительно выбирать ванадий, ниобий или тантал. 1 з.п. ф-лы, 1 ил. Подробнее
Дата
2019-10-31
Патентообладатели
"Акционерное общество ""Научно-производственное предприятие ""Пульсар"" "
Авторы
Савченко Евгений Матвеевич , Чупрунов Алексей Геннадьевич , Сидоров Владимир Алексеевич , Пронин Андрей Анатольевич
СПОСОБ НАНЕСЕНИЯ ИЗОЛЯЦИОННОГО ПОКРЫТИЯ НА ЭЛЕКТРОДЫ-ИНСТРУМЕНТЫ ИЛИ ПРИСПОСОБЛЕНИЯ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ / RU 02721238 C1 20200518/
Открыть
Описание
Изобретение относится к области машиностроения, а именно к способу нанесения порошкового изоляционного покрытия на нерабочие части электродов-инструментов и приспособлений для электрохимической обработки металлов и сплавов, в частности для получения фасонных и профильных углублений, пазов и отверстий. В качестве изоляционного покрытия используют порошковый праймер, которым покрывают нерабочие части профильного электрода-инструмента или приспособления в камере нанесения покрытия ручным распылителем по методу электростатического осаждения. Далее выполняют термообработку нанесенного слоя порошкового праймера, а затем электроды-инструменты или приспособления в нагретом состоянии помещают в герметичный контейнер, в который подают сжатый воздух до давления 6-10 бар для проведения полимеризации. Обеспечивается высокая стойкость и качество изоляционного порошкового покрытия. 2 з.п. ф-лы, 2 ил., 1 пр. Подробнее
Дата
2019-10-22
Патентообладатели
"Публичное акционерное общество ""ОДК-Сатурн"" "
Авторы
Милишин Иван Владимирович , Орлов Александр Алексеевич
Способ воспроизведения авторских рисунков на металлографской доске методом углубленной гравюры / RU 02722799 C1 20200603/
Открыть
Описание
Изобретение относится к искусству графики и может быть использовано для воспроизведения авторских рисунков на металлографской доске методом углубленной гравюры. Способ воспроизведения авторских рисунков на металлографской доске методом углубленной гравюры включает выполнение на поверхности доски, имеющей электродный потенциал более отрицательный, чем электродный потенциал меди, авторского рисунка, осаждение на поверхность доски, свободную от рисунка, защитного слоя из меди или ее сплава, удаление рисунка, углубление обнаженного на месте рисунка металла травлением в растворе, обеспечивающим растворение металла основания преимущественно вследствие реакции контактного обмена с ионами меди, удаление защитного слоя, печатание оттисков, причем после осаждения защитного слоя удаляют часть рисунка, а травление по меньшей мере один раз прерывают и в перерыве удаляют рисунок частично или полностью, после чего продолжают травление. Техническими результатами изобретения являются упрощение способа и расширение технологических возможностей получения многоуровнего углубленного рельефа. 2 з.п. ф-лы, 1 пр. Подробнее
Дата
2019-10-10
Патентообладатели
Каплунов Сергей Геннадьевич
Авторы
Каплунов Сергей Геннадьевич
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ДИОКСИДА ЦИРКОНИЯ СО СФЕРОИДАЛЬНОЙ ФОРМОЙ ЧАСТИЦ / RU 02714452 C1 20200217/
Открыть
Описание
Изобретение относится к золь-гель технологии получения материалов на основе диоксида циркония со сфероидальной формой частиц. Может использоваться при получении порошков для плазменного напыления, горячего и холодного прессования, лазерного спекания. Готовят водный раствор водорастворимых солей циркония, вводят в него водорастворимые соли металлов, выбранных из числа скандия, иттрия, лантана и лантаноидов с формированием общего раствора солей металлов. Готовят раствор-осадитель путем растворения гидроксидов щелочных металлов или аммиака в воде, проводят осаждение гидратированного оксида циркония путем дозирования общего раствора солей металлов в реакционный объем, в котором поддерживается перемешивание и постоянное значение рН из диапазона значений от 4 до 6 включительно за счет контролируемого введения раствора-осадителя. Отделяют образовавшийся осадок, сушку и термообработку. Обеспечивается получение узкофракционированных порошковых материалов при сокращении стадий процесса. 6 з.п. ф-лы, 3 ил., 7 пр. Подробнее
Дата
2019-09-28
Патентообладатели
"ООО ""Т-Сфера"" "
Авторы
Машковцев Максим Алексеевич , Пономарев Антон Васильевич , Буйначев Сергей Владимирович , Алёшин Данил Константинович
Способ воспроизведения авторских рисунков на металлографской доске методом углубленной гравюры / RU 02716919 C1 20200317/
Открыть
Описание
Изобретение относится к искусству графики. Способ осуществляется на металлографской доске методом углубленной гравюры и включает выполнение на поверхности доски авторского рисунка, осаждение на поверхность доски, свободную от рисунка, защитного слоя из меди или ее сплава, удаление рисунка, углубление обнаженного на месте рисунка металла травлением в растворе, не травящем защитный слой, удаление защитного слоя, печатание оттисков. Техническими результатами изобретения являются снижение трудоемкости и возможность воспроизведения авторского рисунка на доске, изготовленной из оцинкованной стали. 2 з.п. ф-лы. Подробнее
Дата
2019-09-20
Патентообладатели
Каплунов Сергей Геннадьевич
Авторы
Каплунов Сергей Геннадьевич
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ГАЛОГЕНИДОВ ЛИТИЯ В ЛИТИЕВОМ ЭЛЕКТРОЛИТЕ ДЛЯ ТЕПЛОВЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА / RU 02715225 C1 20200226/
Открыть
Описание
Изобретение относится к аналитической химии, а именно к методам определения концентрации компонентов электролитов для тепловых химических источников тока (ТХИТ), и может быть использовано для определения галогенидов щелочных металлов при их совместном присутствии в твердых литиевых электролитах. Для этого проводят предварительное измельчение перетиранием твердого образца электролита, затем отобранные и измельченные пробы твердого литиевого электролита направляют на раздельные этапы последовательного определения фторидов, бромидов и хлоридов. Для определения массовой доли фторидов используют гравиметрический метод после предварительного сплавления измельченной пробы с комплексным реактивом из углекислых солей калия и натрия и последующим выщелачиванием смеси горячей дистиллированной водой. Осадок примесных соединений алюминия и кремния отделяют и нейтрализуют соляной (HCl), затем азотной кислотами (HNO3) при температуре не более 40°С. Фториды концентрируют осаждением раствором уксуснокислого свинца, осадок фторхлорида свинца промывают при рН 3,5 - 4,6, а затем сушат и определяют массовую долю фторидов по формуле: ! , ! где CF - массовая доля фторидов, %; mF - масса полученного осадка фторхлорида свинца, г; mнF - масса навески пробы электролита, взятая при анализе на содержание фторидов, г; 0,0726 - коэффициент пересчета массы фторхлорида свинца на массу фторида; 200 - вместимость мерной колбы с раствором электролита, см3; 100 - объем аликвоты раствора электролита, см3. При отсутствии алюминийсодержащего загустителя в электролите массовую долю фторидов определяют методом потенциометрического титрования с фторидселективным электродом. Для этого навеску измельченной пробы растворяют в разбавленном растворе HCl, в который помещают фторид-селективный и вспомогательный электроды и при постоянном перемешивании на магнитной мешалке проводят титрование фторидов из стеклянной бюретки раствором лантана азотнокислого до точки эквивалентности по рН-метру-иономеру; вычисление массовой доли фторидов проводят по формуле: ! ! где CF - массовая доля фторидов, %; VLa - объем раствора лантана азотнокислого, израсходованный на титрование, см3; mнF - масса навески пробы электролита, взятая при анализе на содержание фторидов в отсутствие алюминия, г; TLa-F - массовая концентрация раствора лантана азотнокислого по фториду, мг/см3. Для определения массовой доли бромидов в электролите готовят водный раствор измельченной пробы твердого литиевого электролита с добавлением концентрированной серной кислоты (Н2SO4) с последующим добавлением раствора со смесью калия йодноватокислого и натрия серноватистокислого. Взаимодействие бромида лития с йодистым калием приводит к получению брома, его удалению кипячением и титрованием избытка йодистого калия для определения массовой доли бромидов йодометрическим методом по формуле: ! ! где СBr - массовая доля бромидов в электролите, %; 10 - объем добавленного в избытке раствора калия йодноватокислого, см3; mнBr - масса навески пробы электролита, взятая при анализе на содержание бромидов, г; СK-Br - массовая концентрация раствора калия йодноватокислого по бромиду, мг/см3. Для определения массовой доли хлоридов в электролите определяют разницу между суммарной величиной массовых долей бромидов и хлоридов, определенных методом меркурометрического титрования в кислой среде с индикатором дифенилкарбазоном, и предварительно установленной массовой долей бромидов в пробе, установленной при титровании растровом ртути (I) азотнокислой. Затем по разности объемов рассчитывают израсходованный объем ртути (I) азотнокислой на титрование хлоридов и определяют соответствующую этому значению массовую долю хлоридов в литиевом электролите по формуле: ! , ! где CCl - массовая доля хлоридов в электролите, %; - объем раствора ртути (I) азотнокислой, израсходованный на титрование суммы хлоридов и бромидов, см3; - объем раствора ртути (I) азотнокислой, израсходованный на титрование бромидов, см3: ! ! - массовые концентрации раствора ртути азотнокислой по хлориду и по бромиду, мг/см3; - массовая доля бромидов в электролите, %; mнCl - навеска электролита, взятая при определении хлоридов, г. Изобретение обеспечивает повышение точности определения индивидуальных концентраций галогенидов лития в присутствии солей алюминия в твердом литиевом электролите. 7 табл., 2 пр. Подробнее
Дата
2019-09-16
Патентообладатели
"Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии ""Росатом"" , Федеральное государственное унитарное предприятие ""Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики"" "
Авторы
Жогова Кира Борисовна , Вахнина Ольга Викторовна , Конопкина Ирина Андреевна , Герасимова Наталья Васильевна , Анникова Светлана Александровна , Татурина Наталья Владимировна
Способ повышения износостойкости режущих пластин из оксидно-карбидной керамики при фрезеровании / RU 02712154 C1 20200124/
Открыть
Описание
Изобретение относится к области машиностроения, в частности к обработке металлов резанием, и может быть использовано при изготовлении режущего инструмента из оксидно-карбидной керамики. Способ включает выполняемую после операции шлифования импульсную лазерную модификацию контактных участков керамических пластин с формированием упрочняющей фаски длиной 0,3-0,35 мм, углом 20…22° и скруглением кромок до радиусов 0,09 мм при интенсивности излучения 36,7 Дж/см2, частоте следования импульсов 70 кГц, шагом между импульсами 20-30 мкм и количеством проходов 300. После импульсной лазерной модификации на поверхность керамических пластин методом плазмохимического газофазного осаждения наносится алмазоподобное покрытие толщиной 2,5-3 мкм в плазме тлеющего разряда посредством запуска химической реакции и разрядной деструкции газовой смеси ацетилена С2Н2 с объемной долей 90%, аргона Ar с объемной долей 8% и тетраметилсилана Si(CH3)4 с объемной долей 2%. Улучшаются свойства поверхностного слоя оксидно-карбидной керамики, обеспечивается высокая износостойкость и минимизируются случаи хрупкого разрушения режущей части керамических пластин при фрезеровании закаленных сталей и жаропрочных сплавов на увеличенных подачах. 6 ил., 1 табл. Подробнее
Дата
2019-09-06
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Московский государственный технологический университет ""СТАНКИН"" "
Авторы
Григорьев Сергей Николаевич , Волосова Марина Александровна
Способ извлечения платины из технической соли гексахлороплатината аммония / RU 02711762 C1 20200122/
Открыть
Описание
Изобретение относится к гидрометаллургии платиновых металлов. Извлечение платины из технической соли гексахлороплатината аммония включает приготовление водной пульпы гексахлороплатината аммония и обработку ее монооксидом углерода СО при интенсивном перемешивании, атмосферном давлении и температуре 60°С до полного растворения соли. Осадок платины и палладия отделяют, после чего ведут обработку раствора H2PtCl4 хлором и отделяют осадок чистой соли гексахлороплатината аммония с последующим прокаливанием, вызывающим восстановление палладия и осаждение платины в количестве 5-10%. Приготавливают повторно пульпу технической соли гексахлороплатината аммония, в которую добавляют фильтрат, представляющий собой полученный на предыдущей стадии раствор H2PtCl4, в количестве, необходимом для получения в смешанной пульпе соотношения Pt(II): Pt(IV) равного 2%. Смешанную пульпу повторно обрабатывают монооксидом углерода СО, повторяя при этом все операции предыдущей стадии. Осаждают чистую соль гексахлороплатината аммония, а осадок отфильтровывают и промывают на фильтре 10% водным раствором хлористого аммония. После высушивания и прокаливания получают пластичную платиновую губку. Изобретение повышает качество получаемого продукта в виде пластичной платиновой губки как по содержанию примесей, так и по пластичности. 1 табл., 2 пр. Подробнее
Дата
2019-09-04
Патентообладатели
Федосеев Игорь Владимирович , Васекин Василий Васильевич , Марамыгина Мария Вячеславовна , Ровинская Наталья Валентиновна
Авторы
Федосеев Игорь Владимирович , Васекин Василий Васильевич , Марамыгина Мария Вячеславовна , Ровинская Наталья Валентиновна
СПОСОБ ПОЛУЧЕНИЯ ГАЛЛАТНОГО РАСТВОРА / RU 02712162 C1 20200124/
Открыть
Описание
Изобретение относится к области металлургии редких металлов, а именно к способам извлечения галлия из щелочных галлийсодержащих растворов, в том числе оборотных растворов глиноземного производства. Галлатный раствор получают из щелочного галлийсодержащего раствора. Проводят сорбцию галлия из оборотного раствора на ионите на основе дивинилбензольного полимера, десорбцию галлия раствором серной кислоты с получением галлийсодержащего элюата, последующее концентрирование галлия путем перевода его в твердую фазу нейтрализацией элюата каустическим раствором с осаждением осадка гидроксида галлия при заданной температуре. Проводят сгущение и фильтрование осадка с дальнейшим его растворением в каустическом растворе до получения заданной концентрации галлия в растворе. Способ позволяет увеличить концентрацию галлия путем перевода его в твердую фазу при нейтрализации кислых элюатов щелочным раствором, что позволяет упростить процесс концентрирования и уменьшить количество технологических операций и, как следствие, удешевить производство галлия. 2 н. и 12 з.п. ф-лы, 1 ил., 3 пр. Подробнее
Дата
2019-07-12
Патентообладатели
"Общество с ограниченной ответственностью ""Объединенная Компания РУСАЛ Инженерно-технологический центр"" "
Авторы
Дамаскин Александр Александрович , Сусс Александр Геннадиевич , Печёнкин Максим Николаевич , Дамаскина Анна Александровна
РАСТВОР ДЛЯ КОНТАКТНОГО МЕДНЕНИЯ ИЗДЕЛИЙ ИЗ СТАЛИ / RU 02716910 C1 20200317/
Открыть
Описание
Изобретение относится к нанесению металлических покрытий, в частности к водным растворам контактного меднения, и может быть использовано в различных областях промышленности для нанесения на поверхность изделий из стали медного покрытия, выполняющего роль подслоя или декоративного изображения, в том числе художественного. Раствор содержит сульфат меди 5-40 г/л, серную кислоту 20-100 г/л, карбоновую кислоту или ее натриевую соль, выбранную из группы, включающей аминоуксусную, винную, глюконовую, лимонную, молочную, уксусную, яблочную кислоту, в количестве 0,1-40 г/л или салициловую кислоту или ее натриевую соль в количестве 0,1-2 г/л. Раствор дополнительно может содержать соль олова, в пересчете на металл, 0,05-2,5 г/л. Изобретение позволяет получать на поверхности изделий из стали блестящие и полублестящие, малопористые покрытия, обладающие хорошим сцеплением со сталью, а при осаждении в окна защитного резиста декоративные изображения высокого качества. 1 з.п. ф-лы, 1 табл. Подробнее
Дата
2019-06-17
Патентообладатели
Каплунов Сергей Геннадьевич
Авторы
Каплунов Сергей Геннадьевич
Способ монтажа полупроводниковых кристаллов на покрытую золотом поверхность / RU 02714538 C1 20200218/
Открыть
Описание
Изобретение относится к области полупроводниковой микроэлектроники и может быть использовано в производстве полупроводниковых приборов, интегральных и гибридных микросхем. Способ монтажа полупроводниковых кристаллов на покрытую золотом поверхность включает нанесение на обратную сторону полупроводниковых кристаллов контактного слоя и последующую контактно-реактивную пайку полупроводниковых кристаллов на покрытую золотом поверхность корпуса на эвтектический сплав. Согласно изобретению нанесенный на обратную сторону полупроводниковых кристаллов контактный слой содержит последовательно напыленные металлы титан-никель-золото, толщиной 0,08±0,03 мкм, 0,07±0,03 мкм и 0,04±0,02 мкм, соответственно и нанесенный методом гальванического осаждения сплав золото-олово толщиной 4-6 мкм, с содержанием золота 70-80%, а пайку полупроводниковых кристаллов на покрытую золотом поверхность корпуса осуществляют при температуре 300-320°С в течение 1-2 секунд. Изобретение обеспечивает возможность получения качественного и надежного соединения кристалла с основанием корпуса при температуре монтажа 300-320°С, что обеспечивает возможность монтажа полупроводниковых кристаллов большой площади, а также позволяет монтировать кремниевые и арсенид-галлиевые кристаллы полупроводниковых приборов и интегральных микросхем. 2 ил. Подробнее
Дата
2019-05-21
Патентообладатели
"Акционерное общество ""ОКБ-Планета"" АО ""ОКБ-Планета"" "
Авторы
Ионов Александр Сергеевич , Худякова Нина Демьяновна , Забегина Татьяна Николаевна
Способ получения покрытия на поверхности детали из цветных металлов / RU 02710094 C1 20191224/
Открыть
Описание
Изобретение относится к области машиностроения, а именно к способам получения покрытия на поверхности деталей из цветных металлов путем переноса высокотемпературным газовым потоком наночастиц. Способ получения покрытия на поверхности детали из цветных металлов включает формирование в камере сгорания высокоскоростного распылителя высокотемпературного газового потока путем сжигания топлива в окислителе, подачу в камеру сгорания высокоскоростного распылителя жидкого исходного материала, являющегося источником образования наночастиц, образование, разогрев и перенос высокотемпературным газовым потоком наночастиц и осаждение их на поверхности детали, причем упомянутый материал, являющийся источником образования наночастиц, одновременно используют в качестве топлива для формирования высокотемпературного газового потока, при этом упомянутый материал представляет собой истинный или коллоидный раствор органических и/или неорганических соединений в органическом растворителе или смеси нескольких растворителей, при этом перенос высокотемпературным газовым потоком наночастиц и осаждение их на поверхности детали осуществляют совместно с непосредственно предшествующей им обработкой поверхности детали электрической дугой, создаваемой между двумя вольфрамовыми электродами при переменном токе 35-45 А, напряжении 12-16 В и проходящей по поверхности детали со скоростью перемещения высокоскоростного распылителя установки для напыления на расстоянии между дугой и струей газа с напыляемым порошковым материалом 2-4 мм. Техническим результатом изобретения является повышение адгезионной прочности, повышение когезионной прочности материала покрытия, а также уменьшение пористости покрытия. 3 пр., 2 табл. Подробнее
Дата
2019-05-13
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Кубанский государственный технологический университет"" "
Авторы
Балаев Эътибар Юсиф Оглы , Елисеев Владимир Николаевич
СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ ФОСФОГИПСА С ПОЛУЧЕНИЕМ КОНЦЕНТРАТА РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ И ГИПСА СТРОИТЕЛЬНОГО / RU 02706401 C1 20191118/
Открыть
Описание
Настоящее изобретение относится к способу извлечения редкоземельных металлов из фосфогипса. Способ включает обработку фосфогипса сернокислым раствором, фильтрацию, экстракцию из полученного раствора осадка нерастворимых соединений РЗЭ путем введения уксусной кислоты, отделение осадка фильтрацией, при этом выделение редкоземельных металлов из раствора проводят уксусной кислотой или ее растворимыми солями при расходе на осаждение 250÷300 мол.% на РЗЭ от стехиометрии и нейтрализации раствора до значения рН 1,0÷2,5, последующего отделения осадка ацетатов РЗЭ от маточного раствора, осуществляют промывку, сушку и, при необходимости, прокалку с получением концентрата РЗЭ в солевой или оксидной форме, нейтрализацию осадка гипса осуществляют основным соединением кальция, а маточный раствор при этом последовательно обрабатывают негашеной известью (СаО) для нейтрализации серной кислоты, проводят фильтрацию образованного осадка - сульфата кальция от маточного раствора, который утилизируют в виде сточной воды, либо направляют в качестве рецикла на приготовление раствора уксусной кислоты, а балансовый избыток при этом направляют в блок нейтрализации уксусной кислоты оксалатом бериллия с образованием нерастворимого осадка - ацетата бериллия, осуществляют фильтрацию нерастворимого осадка ацетата бериллия от маточного раствора, содержащего щавелевую кислоту, с последующей ее нейтрализацией негашеной известью (СаО) с образованием нерастворимого осадка - оксалата кальция, фильтрацию оксалата кальция от маточного раствора, который утилизируют в виде сточной воды, либо направляют в качестве рецикла для приготовления раствора серной кислоты, а балансовый избыток выводят с установки в качестве сточных вод. Обеспечивается увеличение степени извлечения получаемого концентрата РЗЭ до 98÷99%, повышение его качества, снижение затрат на его производство, сокращение сбросов сточных вод путем изменения типов применяемых реагентов и режимов их применения. 1 ил. Подробнее
Дата
2019-05-06
Патентообладатели
"Общество с ограниченной ответственностью ""НефтеХимКонсалт"" "
Авторы
Кантюков Денис Тагирович , Хаматшин Рустам Айратович
СПОСОБ СЕЛЕКТИВНОГО ИЗВЛЕЧЕНИЯ ЖЕЛЕЗА (III) И МАРГАНЦА (II) ИЗ ВОДНЫХ РАСТВОРОВ / RU 02698083 C1 20190821/
Открыть
Описание
Изобретение относится к области гидрометаллургии цветных металлов и может быть использовано при переработке концентратов, промпродуктов и твердых отходов, содержащих металлы. Способ включает контактирование экстрагента и раствора, перемешивание смеси, отстаивание и разделение фаз. При этом сначала осуществляют экстракцию ионов Fe (III) трибутилфосфатом из водного раствора с концентрацией 3н. HCl, 240 NaCl г/дм3 и температурой 60°С порционным введением ТБФ при минимальном времени контакта раствора и экстрагента. Затем осуществляют реэкстракцию ионов железа из экстракта водой с осаждением из раствора оксида Fe2O3. Осаждение марганца ведут из рафината аммиаком при продувке раствора воздухом при рН 8-8,5 и температуре 50-55°С. Технический результат заключается в эффективности селективного извлечения ионов Fe (III) и Mn (II) из водных растворов. 3 ил., 1 табл. Подробнее
Дата
2019-04-03
Патентообладатели
Воропанова Лидия Алексеевна
Авторы
Воропанова Лидия Алексеевна , Кокоева Наталья Борисовна , Гагиева Фатима Акимовна , Гагиева Залина Акимовна , Пухова Виктория Петровна
Способ физического осаждения тонких пленок металлов из газовой фазы / RU 02697313 C1 20190813/
Открыть
Описание
Изобретение относится к способу физического осаждения из газовой фазы, полученной с помощью электронно-лучевого испарения, тонкой пленки, состоящей из кристаллитов серебра, и может быть использовано для изготовления устройств, требующих качественных тонких пленок металлов, в сферах микроэлектроники, фотоники, наноплазмоники и квантовых вычислительных устройств. Проводят подготовку рабочей поверхности подложки, осуществляют обезгаживание подложки в вакууме и указанное физическое осаждение тонкой пленки из кристаллитов серебра на рабочую поверхность подложки. Упомянутое физическое осаждение тонкой пленки из кристаллитов серебра осуществляют при температуре T1, находящейся в диапазоне 4-250 K, после этого осуществляют выдержку подложки в вакууме в течение периода времени tH в диапазоне 2-24 ч при нагреве от температуры T1 физического осаждения упомянутой тонкой пленки до температуры Т2, равной комнатной температуре. Обеспечивается повышение аспектного отношения латеральных размеров тонкой пленки из кристаллитов серебра к ее толщине. 12 з.п. ф-лы, 11 ил., 2 пр. Подробнее
Дата
2019-04-02
Патентообладатели
Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Авторы
Родионов Илья Анатольевич , Рыжиков Илья Анатольевич , Габидуллин Айдар Радикович , Москалев Дмитрий Олегович , Бабурин Александр Сергеевич
Способ изготовления массивов регулярных субмикронных металлических структур на оптически прозрачных подложках / RU 02706265 C1 20191115/
Открыть
Описание
Изобретение относится к области микро- и нанотехнологии и может быть использовано для изготовления массивов субмикронных структур, используемых в устройствах нанофотоники и наноплазмонной сенсорики для повышения уровня их чувствительности. Способ изготовления массивов регулярных субмикронных металлических структур на оптически прозрачных подложках включает подготовку рабочей поверхности оптически прозрачной подложки, нанесение резистивного слоя на рабочую поверхность оптически прозрачной подложки, лучевое экспонирование, проявление с формированием маски в резистивном слое и физическое осаждение металла из газовой фазы. Формирование маски в резистивном слое осуществляют путем трехуровнего профилирования дозы облучения, включающего первый уровень облучения с дозой D1 области структуры с площадью S1, второй уровень облучения с дозой D2 области структуры с площадью S2 по периметру структуры с площадью S1 и третий уровень облучения с дозой D3 области структуры с площадью S3, превышающей площадь, равную сумме S1 и S2, при этом доза облучения D3 много меньше дозы облучения D1, a доза облучения D2 больше дозы D1. В частных случаях осуществления изобретения после нанесения резистивного слоя на рабочую поверхность оптически прозрачной подложки на резистивный слой наносят проводящий слой, который удаляют перед проявлением. Область структуры с площадью S1 много больше области структуры с площадью S2. Изготовление упомянутых структур осуществляют в условиях вакуума ниже 1×10-6 мбар. В качестве лучевого экспонирования проводят электронно-лучевое экспонирование. Осаждение металла проводят при температуре Т1 в диапазоне от 150 до 450 К со скоростью не более 5 нм/с. Обеспечивается уменьшение шероховатости края регулярных субмикронных металлических структур и повышение повторяемости изготавливаемых массивов указанных структур на оптически прозрачных подложках. 5 з.п. ф-лы, 6 ил., 1 пр. Подробнее
Дата
2019-04-02
Патентообладатели
Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Авторы
Родионов Илья Анатольевич , Орликовский Николай Александрович , Рыжова Елена Владимировна , Пищимова Анастасия Александровна
Способ электрохимического осаждения легированных атомами переходных металлов кремний-углеродных пленок на электропроводящие материалы / RU 02711066 C1 20200115/
Открыть
Описание
Изобретение относится к области гальванотехники и может быть использовано в технологии тонкопленочной микроэлектроники для получения химически, механически, коррозионно- и термостойких покрытий с заданными электрическими и/или магнитными, и/или прочностными свойствами. Способ включает формирование кремний-углеродной пленки методом электрохимического осаждения из электролита, состоящего из гексаметилдисилазана в метиловом или этиловом спирте и соли переходного металла, на электропроводящую подложку с ранее осажденной электрохимическим методом кремний-углеродной пленкой, расположенной на катоде, на который относительно анода подают напряжение до 200 В с плотностью тока до 50 мА/см2. Технический результат: получение легированной атомами переходных металлов кремний-углеродной пленки, имеющей фазы карбида кремния и оксидов переходных металлов, обладающей заданными электрическими и прочностными свойствами, химической, механической, коррозионной и термостойкостью на любых электропроводящих материалах. Данный способ технически прост, позволяет сократить время на процессы изготовления устройств, основанных на металлсодержащих кремний-углеродных пленках. Подробнее
Дата
2019-03-05
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Южный федеральный университет"" "
Авторы
Мясоедова Татьяна Николаевна , Михайлова Татьяна Сергеевна , Григорьев Михаил Николаевич