Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
ОЦЕНКА УСИЛИЯ НА РОБОТОХИРУРГИЧЕСКОМ ИНСТРУМЕНТЕ / RU 02721462 C1 20200519/
Открыть
Описание
Изобретение относится к медицине, а именно к системе минимального инвазивного вмешательства. Система включает манипулятор и систему оценки сил, воздействующих на инструмент в течение хирургической операции. Манипулятор имеет опору, сконфигурированную для закрепления троакара и для закрепления привода хирургического инструмента. Система оценки сил включает трехосевой нижний тензометрический датчик (2), трехосевой верхний тензометрический датчик (1), датчик усилия захвата исполнительных поверхностей инструмента и датчик момента вращения хирургического инструмента. Трехосевой нижний тензометрический датчик расположен на опоре манипулятора в месте закрепления троакара и находится в непосредственном контакте с ним. Трехосевой верхний тензометрический датчик расположен на опоре манипулятора под приводом хирургического инструмента. Датчик усилия захвата выполнен в виде датчика силы тока для электродвигателя привода инструмента, обеспечивающего сжатие исполнительных поверхностей инструмента. Датчик момента вращения выполнен в виде датчика силы тока для электродвигателя привода инструмента, обеспечивающего вращение хирургического инструмента вокруг его продольной оси. Тензометрические датчики соединены с модулями цифровой обработки данных. Датчик усилия захвата и датчик момента вращения соединены с системами управления электродвигателем. Модули цифровой обработки и системы управления электродвигателями соединены с модулем обработки, который запрограммирован для осуществления вычисления: сил, направленных вдоль линейных осей; вращательных моментов инструмента вдоль осей х и у относительно точки ввода троакара в тело пациента; вращательного момента инструмента вдоль оси z относительно точки ввода троакара в тело пациента; усилия сжатия исполнительных поверхностей инструмента. Каждый модуль цифровой обработки запрограммирован для использования цифрового фильтра нижних частот и алгоритма полосно-заграждающего фильтра для данных усилия, измеренных тензометрическим датчиком. Модуль обработки запрограммирован для: компенсации силы тяжести, действующей на опору манипулятора и инструмента; компенсации сил, вызываемых сопротивлением троакара движению инструмента; компенсации динамических характеристик элементов, размещенных на оси вращения электродвигателей. Модуль обработки выполнен с возможностью передачи данных на систему управления роботохирургическим комплексом. Изобретение обеспечивает достоверное определение источников сил, воздействующих на хирургический инструмент во время работы, а также точное измерение этих сил в условиях повышенного электромагнитного шума. 2 з.п. ф-лы, 9 ил. Подробнее
Дата
2019-12-25
Патентообладатели
АССИСТИРУЮЩИЕ ХИРУРГИЧЕСКИЕ ТЕХНОЛОГИИ , ЛТД
Авторы
Пушкарь Дмитрий Юрьевич , Нахушев Рахим Суфьянович
СПОСОБ ОПРЕДЕЛЕНИЯ ЗНАЧИМОСТИ РАЗЛИЧИЙ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ СУБПОПУЛЯЦИИ ЛИМФОЦИТОВ МЕТОДОМ ПРОТОЧНОЙ ЦИТОФЛЮОРИМЕТРИИ / RU 02720411 C1 20200429/
Открыть
Описание
Изобретение относится к медицине, а именно к иммунологии, и может быть использовано для определения значимости различий результатов измерений субпопуляций лимфоцитов методом проточной цитофлюориметрии. С этой целью определяют среднее значение М сравниваемых результатов измерения и абсолютное значение их разности D в выбранных единицах измерения, для среднего значения М определяют соответствующее значение минимального определяемого различия MDD по определенной таблице и сравнивают абсолютное значение разности D со значением минимального определяемого различия MDD и при D>MDD различия в результатах измерения считают значимыми. Способ позволяет определить значимость различий результатов измерения субпопуляции лимфоцитов методом проточной цитофлюориметрии, при этом определен диапазон значений, в пределах которого различия между измерениями не могут быть адекватно измерены с применением современной методологии подсчета субпопуляций лимфоцитов. Рассчитанные значения минимальных определяемых различий могут быть использованы в качестве нулевой точки для качественной и полуколичественной системы оценки иммунологических изменений. 2 табл., 3 пр. Подробнее
Дата
2019-12-23
Патентообладатели
"Федеральное государственное бюджетное учреждение ""Национальный медицинский исследовательский центр онкологии имени Н.Н. Петрова"" Министерства здравоохранения Российской Федерации "
Авторы
Балдуева Ирина Александровна , Новик Алексей Викторович , Гирдюк Дмитрий Викторович , Кузнецова Анастасия Игоревна
Устройство объединения инфракрасных изображений / RU 02718211 C1 20200331/
Открыть
Описание
Изобретение относится к области вычислительной техники. Технический результат заключается в повышении скорости принятия решения и уменьшении вычислительных затрат за счёт формирования комбинированных данных из пары изображений, фиксируемых в инфракрасном диапазоне. Технический результат достигается за счет устройства объединения инфракрасных изображений, содержащего первый и второй информационные входы устройства, регистр хранения входной реализации первого изображения, регистр хранения входной реализации второго изображения, блок фильтрации первого изображения, блок фильтрации второго изображения, причем устройство дополнительно содержит блок поиска базовых точек, блок упрощения изображений, блок поиска центров масс объектов, блок определения усреднённых значений и выбора базовых точек, блок преобразований изображений. 2 ил. Подробнее
Дата
2019-12-13
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Донской государственный технический университет"" "
Авторы
Гапон Николай Валерьевич , Воронин Вячеслав Владимирович , Сизякин Роман Алексеевич , Жданова Марина Михайловна , Семенищев Евгений Александрович , Толстова Ирина Владимировна
Способ определения механических напряжений в стальном трубопроводе / RU 02722333 C1 20200529/
Открыть
Описание
Изобретение относится к области оценки технического состояния стальных трубопроводов и может быть использовано для определения механических напряжений, например, в стальных трубопроводах подземной прокладки. Сущность: осуществляют изготовление образца в виде полого цилиндра из материала, аналогичного материалу трубопровода, пошаговое нагружение образца созданием в нем избыточного внутреннего давления жидкой или газовой среды и его изгибом, получение зависимости коэрцитивной силы от величины механических напряжений в образце. Назначают две контрольные точки на окружности образца: одну - в зоне растяжения при изгибе, вторую - в зоне сжатия при изгибе. Нагружение образца производят одновременным действием изгиба и внутреннего давления среды. Измеряют коэрцитивную силу в контрольных точках, ориентируя датчик коэрцитиметра вдоль оси образца. Строят графики зависимости коэрцитивной силы Нс от изгибных напряжений σизг, при различных давлениях среды Рвн. Определяют сечение трубопровода с потенциально высокими изгибными напряжениями. Намечают точки контроля окружности трубопровода в выбранном сечении, измеряют коэрцитивную силу в выбранных точках, ориентируя датчик коэрцитиметра таким образом, чтобы направление магнитного потока в датчике совпадало с осью трубопровода. Выбирают среди измеренных значений максимальное и минимальное, при этом эти значения должны относиться к диаметрально противоположным точкам сечения трубопровода, считают, что точка с минимальным значением коэрцитивной силы связана с зоной максимальных растяжений, с максимальным значением - с зоной максимального сжатия. Определяют угол плоскости изгиба, проходящей через точки максимальных растяжений и сжатия, измеряют давление в трубопроводе и определяют изгибные напряжения в трубопроводе при помощи полученной зависимости для соответствующего давления. Технический результат: возможность определения механических напряжений в стенке стального трубопровода с учетом одновременного воздействия поперечного изгиба и внутреннего давления транспортируемой среды, повышение достоверности способа, расширение его возможностей. 3 ил. Подробнее
Дата
2019-12-09
Патентообладатели
"Публичное акционерное общество ""Транснефть"" , Акционерное общество ""Транснефть-Север"" "
Авторы
Агиней Руслан Викторович , Исламов Рустэм Рильевич , Мамедова Эльмира Айдыновна
УСТРОЙСТВО УПРАВЛЕНИЯ АВТОНОМНЫМ АСИНХРОННЫМ ГЕНЕРАТОРОМ / RU 02722689 C1 20200603/
Открыть
Описание
Изобретение относится к электротехнике, в частности к устройству управления автономным асинхронным генератором. Техническим результатом является точное и быстрое определение величины подключаемой нагрузки и точное определение значению величины емкости форсирующих конденсаторов, повышение динамической устойчивости асинхронного генератора, уменьшение длительности переходных процессов и повышение качества электроэнергии. Устройство управления автономным асинхронным генератором, его силовая часть (фиг. 1) содержит асинхронный генератор (1) с тремя фазными обмотками U, V, W, соединенными в генераторе (1) общей точкой - нейтралью N и одноименно выведенным проводом. К фазным обмоткам и нейтрали U, V, W, N присоединены конденсаторы (2) самовозбуждения асинхронного генератора (1), имеющие малую емкость. К фазным обмоткам и нейтрали U, V, W, N одним концом присоединены блоки фазных форсирующих конденсаторов (3), обеспечивающие дополнительное возбуждение асинхронного генератора (1) при подключении нагрузки. Коммутация других концов блоков фазных форсирующих конденсаторов (3) осуществляется блоками трехфазных электронных ключей (4) к фазам U, V, W асинхронного генератора (1). В блоках трехфазных электронных ключей (4) в качестве ключей используют транзисторные ключи переменного тока. Транзисторные ключи переменного тока в отличие от тиристоров обеспечивают включение и выключение в требуемые моменты времени. Управление блоками электронных ключей (4) выполняется по цепям управления ключами (5) системой управления (6). Возможно независимое управление каждым ключом переменного тока в блоке трехфазных электронных ключей (4). Блоков фазных форсирующих конденсаторов (3) и блоков электронных ключей (4) может быть несколько в зависимости от мощности асинхронного генератора (1) и требуемой точности регулирования напряжения. Контроль фактического напряжения генератора (1) осуществляется в каждой фазе U, V, W, и их значения по цепям контроля напряжения (7) передаются в систему управления (6). В каждой фазе асинхронного генератора (1) установлены трансформаторы тока (8). По первичным обмоткам трансформаторов тока (8) протекают токи нагрузки фаз i1. По вторичным обмоткам трансформаторов тока (8) протекают токи i2 и по цепям (9) контроля тока поступают в систему управления (6). На выходе асинхронного генератора (1) за трансформаторами 8 тока установлен выключатель (10) асинхронного генератора (1). Система управления (6) (фиг. 2) содержит: преобразователь (11) величины напряжения фаз; датчики (12) перехода напряжений фаз через ноль; таймер (13), который синхронизирован с напряжением асинхронного генератора (1), через преобразователь (11) величины напряжения фаз; масштабные преобразователи (14) величины вторичного тока i2u, i2v, i2w трансформаторов тока (8); датчики (15) перехода вторичного тока через ноль каждой фазы; измерительные синхронизированные датчики (16) вторичного тока фаз, синхронизированные таймером (13) с напряжением асинхронного генератора (1); блок (17) вычисления мощности нагрузки, подключенной к асинхронному генератору (1); блок вычисления требуемой емкости (18) блока фазных форсирующих конденсаторов (3); формирователь (19) команд управления блоков электронных ключей (4), синхронизированное с напряжением асинхронного генератора (1); блок питания (20) элементов системы управления (6). 3 ил. Подробнее
Дата
2019-12-05
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Ставропольский государственный аграрный университет"" "
Авторы
Коваленко Владимир Васильевич , Ефанов Алексей Валерьевич , Дудка Виктор Николаевич
СПОСОБ ИНТЕРВАЛЬНОГО ОПРЕДЕЛЕНИЯ МЕСТА ПОВРЕЖДЕНИЯ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ / RU 02720949 C1 20200515/
Открыть
Описание
Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа при одновременном повышении точности. Согласно способу интервального определения места повреждения линии электропередачи с использованием ее модели фиксируют отсчеты токов и напряжений, преобразовывают отсчеты в комплексы токов и напряжений, используют имитационную модель линии электропередачи для воспроизведения режимов повреждения линии. При этом проводят имитации повреждений при различных параметрах электропередачи и в различных точках линии электропередачи, вычисляют погрешности между измеренными на объекте и определенными в результате имитации соответствующими токами и напряжениями, задают необходимое значение погрешности, выбирают в качестве оценки расстояния до места повреждения такие значения координаты имитируемого места повреждения, при которых вычисляемые значения погрешности меньше заданного значения. 8 ил., 9 табл. Подробнее
Дата
2019-11-26
Патентообладатели
Мартынов Михаил Владимирович
Авторы
Мартынов Михаил Владимирович
СПОСОБ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ИЗОЛЯЦИОННОГО ПОКРЫТИЯ УЧАСТКА ПОДЗЕМНОГО ТРУБОПРОВОДА / RU 02720647 C1 20200512/
Открыть
Описание
Изобретение относится к области оценки технического состояния наружного изоляционного покрытия подземных трубопроводов. Сущность: на магистральном трубопроводе выбирают участок контроля состояния изоляционного покрытия между двумя точками контроля. Изменяют режимы работы двух смежных для выбранного участка станций катодной защиты (СКЗ) и находят коэффициенты ее влияния на величину защитной разности потенциалов «труба-земля» в точке контроля. Находят характеристическое сопротивление на выбранном участке (Z) по формуле ! ! где А21 - коэффициент влияния силы тока СКЗ№2 на защитную разность потенциалов «труба земля» в точке контроля 1; А11 - коэффициент влияния силы тока СКЗ№1 на защитную разность потенциалов «труба земля» в точке контроля 1; А12 - коэффициент влияния силы тока СКЗ№1 на защитную разность потенциалов «труба земля» в точке контроля 2; А22 - коэффициент влияния силы тока СКЗ№2 на защитную разность потенциалов «труба земля» в точке контроля 2; по величине которого судят о состоянии изоляционного покрытия. Технический результат: сокращение времени проведения оценки технического состояния изоляционного покрытия, возможность дистанционного определения состояния изоляционного покрытия. 1 ил. Подробнее
Дата
2019-11-25
Патентообладатели
Никулин Сергей Александрович
Авторы
Никулин Сергей Александрович , Карнавский Евгений Львович
Способ контроля качества аммиачной тепловой трубы / RU 02724316 C1 20200622/
Открыть
Описание
Изобретение относится к теплотехнике. Способ контроля качества аммиачной тепловой трубы включает накладывание фильтровальной бумаги, смоченной индикаторным раствором, содержащим 3%-ный раствор CoCl2⋅6H2O, на контролируемый участок трубы, определение места течи по появлению пятен или точек, окрашенных в цвет от голубого до сине-фиолетового, почти черного, в зависимости от количества поступившего аммиака, при этом к середине тепловой трубы осуществляют импульсный подвод тепла, а контролируемый участок трубы с наложенным на него индикатором аммиака до подвода тепла герметизируют с помощью оптически прозрачного материала. Техническим результатом является сокращение времени контроля дефектных областей, повышение информативности контроля, увеличение чувствительности и снижение методической погрешности способа. 1 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-11-12
Патентообладатели
"Акционерное общество ""ОКБ-Планета"" АО ""ОКБ-Планета"" "
Авторы
Петров Александр Владимирович , Евстигнеев Даниил Алексеевич , Карачинов Владимир Александрович , Ионов Александр Сергеевич , Петров Дмитрий Александрович
Способ автоматизированного контроля сплошности изделий и устройство для его осуществления / RU 02720437 C1 20200429/
Открыть
Описание
Изобретение относится к области измерительной техники и может быть использовано для оценки надежности и качества различных изделий. Способ включает размещение на изделии в начале траектории сканирования эталонного дефекта, соответствующего по характеристикам реальному дефекту в изделии и имеющего размеры, соответствующие минимально возможным размерам дефекта в изделии, измерение перед проведением контроля величины сигнала на изделии на расстоянии не более размера минимального дефекта, измерение величины изменения сигнала на эталонном дефекте, установку величины порогового сигнала для выявления дефектов в изделии, двухмерное сканирование в координатах х, у поверхности контролируемого объекта по траектории возвратно-поступательного движения датчиком излучения физического поля с шагом Δх, Δу, воздействие на изделие в процессе сканирования физическим полем в виде импульсного сигнала с частотой fи, измерение величины сигналов излучения физического поля после взаимодействия с изделием с каждой точки поверхности изделия, регистрацию дефектов путем сравнения текущего значения сигнала по траектории сканирования с значением пороговым сигнала. Согласно изобретению, при обнаружении дефекта увеличивают частоту импульсов воздействия физическим полем и уменьшают шаг сканирования. После выхода за границы j-го дефекта частоту импульсов и шаг сканирования снижают. Для осуществления способа используют устройство для автоматизированного контроля сплошности изделий. Технический результат - обеспечение оперативного достоверного контроля сплошности многослойных сложных конструкций и их элементов в процессе производства и в реальных условиях эксплуатации, т.е. снижение погрешности определения границ и местоположения дефектных участков без снижения производительности контроля. 2 н. и 1 з.п. ф-лы, 18 ил., 2 табл. Подробнее
Дата
2019-11-11
Патентообладатели
"Акционерное общество ""Дзержинское производственное объединение ""Пластик"" "
Авторы
Караваев Юрий Александрович
Способ определения координат наземной цели радиолокационной системой, состоящей из двух многолучевых радиопередатчиков и приемника / RU 02722224 C1 20200528/
Открыть
Описание
Изобретение относится к области радиотехники и может быть использовано для расчета двумерных координат наземной цели дальномерным методом радиолокационной системой (РЛС), состоящей из двух многолучевых радиопередатчиков с известными координатами, излучающих кодированные радиолокационные сигналы в заданных направлениях, и радиоприемника с известными координатами, принимающего сигналы, отраженные от наземной цели. Достигаемый технический результат: отсутствие необходимости измерения пеленгов от радиопередатчиков до цели и сокращение зоны поиска цели. Уменьшение области поиска возможных координат наземной цели достигается в радиолокационной системе, содержащей два многолучевых радиопередатчика и приемник сигналов, отраженных от цели, за счет использования информации о номерах многолучевых радиопередатчиков и номерах их лучей, сигналы которых обеспечивают подсвет цели и измерение расстояний «многолучевые радиопередатчики - наземная цель - приемник». В способе определения координат наземной цели радиолокационной системой, состоящей из двух многолучевых радиопередатчиков и приемника, осуществляют излучение в направлениях ϕ1.n первым радиопередатчиком с координатами х1, y1 и в направлениях ϕ2.m вторым радиопередатчиком с координатами х2, у2 кодированных радиолокационных сигналов со своим кодом для каждого направления, которые рассеиваются наземной целью с искомыми координатами х, у и принимаются приемником с известными координатами хп, уп, синхронизированным с радиопередатчиками. Измеряют расстояния Rk «k-й радиопередатчик - наземная цель - приемник» (k=1, 2). Определяют направления ϕ1.n и ϕ2.m «радиопередатчики - наземная цель» по кодам радиолокационных сигналов, рассеянных целью и принятых приемником. Оценивают границы области поиска координат х, у наземной цели с использованием координат многолучевых радиопередатчиков x1, y1, x2, y2 и направлений ϕ1.n, ϕ2.m лучей. Определяют координаты х, у наземной цели путем перебора координат х и у в области поиска и проверки гипотезы о нахождении наземной цели в этой точке, критерием рабочей гипотезы является минимум разности между измеренными расстояниями Rk и расстояниями «k-й радиопередатчик - гипотетическая наземная цель - приемник». 3 ил. Подробнее
Дата
2019-11-05
Патентообладатели
"Акционерное общество научно-внедренческое предприятие ""ПРОТЕК"" "
Авторы
Журавлев Александр Викторович , Маркин Виктор Григорьевич , Шуваев Владимир Андреевич , Красов Евгений Михайлович , Кирюшкин Владислав Викторович
Способ воспроизведения норм испытаний крупногабаритных объектов на исследовательских реакторах / RU 02713924 C1 20200211/
Открыть
Описание
Изобретение относится к способу воспроизведения заданных значений флюенса нейтронов (Фни) и экспозиционной дозы гамма-излучения (Dни). Способ основан на суперпозиции полей излучений от реактора и конверторов нейтронов в гамма-кванты, определении флюенса нейтронов (Ф) с энергиями более 0,1 МэВ и экспозиционной дозы (D) гамма-квантов (параметры нагружения объекта) в зоне двухстороннего облучения объекта, выборе режима работы реактора по формуле P⋅t=Фни/Фр⋅СФ⋅k и толщины (S) конверторов по зависимости CD (S), оценке неравномерности параметров нагружения объекта в испытательном объеме по зависимостям Ф (L, d) и D (L, d), а также на перемещении объекта относительно источника излучений сначала в одну сторону за время t1 при мощности реактора Р, а после его поворота на 180° (по вертикальному или азимутальному углу) - в обратную сторону за время t2=t1 до исходного положения, где CD=Dни/Dp⋅P⋅t⋅k; СФ - коэффициент, определяемый по зависимости СФ(S); t=t1+t2 - длительность работы реактора на мощности; Фр и Dp - соответственно значения флюенса нейтронов и дозы гамма-излучения в реперной точке при стандартной толщине конверторов, определяемые по расчетным зависимостям Фp (L, d), Dp (L, d) и нормированные на один нейтрон из реактора; k - коэффициент пропорциональности, н/Дж; L и d - длина и ширина объекта (испытательного объема). Техническим результатом является возможность радиационного испытания объектов с большими габаритами. 8 ил. Подробнее
Дата
2019-10-31
Патентообладатели
"Федеральное государственное казенное учреждение ""12 Центральный научно-исследовательский институт"" Министерства обороны Российской Федерации "
Авторы
Пикалов Георгий Львович , Бурлака Игорь Андреевич , Бахматов Евгений Юрьевич , Койнов Дмитрий Васильевич , Кораблев Михаил Юрьевич
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ АНИЗОТРОПНЫХ ДИЭЛЕКТРИКОВ / RU 02721472 C1 20200519/
Открыть
Описание
Изобретение относится к области электротехники, в частности к способу определения диэлектрической проницаемости анизотропных диэлектриков, и может быть использовано при контроле качества твердых диэлектрических материалов и покрытий. Способ измерения диэлектрической проницаемости материалов включает облучение диэлектрического образца электромагнитной волной за счет возбуждения несимметричной волны Н01р в круглом волноводе, в котором располагают диэлектрический образец, выполненный в виде пластины, ортогонально продольной оси круглого волновода, при этом диэлектрический образец размещают на металлической подложке и последовательно возбуждают в нем радиальные поверхностные электромагнитные волны на двух близких длинах волн генератора λ1 и λ2 при условии, что (λ2-λ1)/λ1<<1, измеряют значения коэффициента затухания каждой их двух поверхностных волн над диэлектрическим образцом в точках вдоль всей длины окружности, с центром, совпадающим с точкой возбуждения радиальных поверхностных волн, с шагом в зависимости от количество точек измерения коэффициента затухания, по длине окружности для каждой длины волны, находят максимальное и минимальное значения коэффициентов затухания направления двух главных осей поперечной анизотропии исследуемого материала и проводят определение значений диэлектрической проницаемости поперечных компонент тензора диэлектрической проницаемости εх, εу и его нормальной компоненты εz путем решения системы дисперсионных уравнений. Повышение точности измерений поперечной анизотропии диэлектрических материалов является техническим результатом изобретения. 2 ил. Подробнее
Дата
2019-10-28
Патентообладатели
"Федеральное государственное казенное образовательное учреждение высшего образования ""Военный учебно-научный центр Военно-воздушных сил ""Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина"" Министерства обороны Российской Федерации "
Авторы
Казьмин Александр Игоревич , Федюнин Павел Александрович , Федюнин Дмитрий Павлович
СПОСОБ ОПРЕДЕЛЕНИЯ И УТОЧНЕНИЯ УСКОРЕНИЙ ОТ РАБОТЫ ДВИГАТЕЛЕЙ КОРРЕКЦИИ КОСМИЧЕСКОГО АППАРАТА / RU 02723349 C1 20200610/
Открыть
Описание
Способ относится к области космической техники и может быть использован для повышения точности коррекции орбитального движения космического аппарата (КА), оборудованного автономной аппаратурой радионавигации и работающего на прием радиосигналов от глобальных навигационных систем в режиме ежесуточных траекторных измерений и определений. При отнесении определения контрольного параметра на максимально возможное удаление от точки приложения импульса скорости (один из узлов орбиты КА), то есть в точку, где аргумент широты КА равен π/2, фактически обнуляют погрешность определения контрольного параметра, выводя на первый план инструментальную составляющую погрешности определения ускорений (или тяг двигателей). Боковой импульс скорости на активном участке, симметричном относительно одного из узлов является для способа рабочим. Способ направлен на обеспечение приемлемой точности определения и уточнения проекций управляющих ускорений на опорные направления движения при проведении единичных коррекций на витке. Подробнее
Дата
2019-10-25
Патентообладатели
Акционерное общество «Информационные спутниковые системы» имени академика М.Ф. Решетнёва»
Авторы
Афанасьев Сергей Михайлович
СПОСОБ ДИАГНОСТИРОВАНИЯ ДЕТАЛЕЙ ЦИЛИНДРОПОРШНЕВОЙ ГРУППЫ И ГАЗОРАСПРЕДЕЛИТЕЛЬНОГО МЕХАНИЗМА ДВИГАТЕЛЯ / RU 02715132 C1 20200225/
Открыть
Описание
Изобретение относится к технической диагностике и может быть использовано для определения технического состояния деталей цилиндропоршневой группы и газораспределительного механизма двигателя без его пуска. Способ диагностирования деталей цилиндропоршневой группы и газораспределительного механизма двигателя включает проверку уровня масла в картере двигателя. Если уровень масла меньше или больше нормы, то его доводят до нормы по показанию масломерной линейки (щупа). Отключают подачу топлива в цилиндры. В осциллографическом устройстве с функцией запоминания изображения, используемом для анализа синусоидального сигнала, на экран которого специально наносят шкалу соответствия между определяемым осциллографическим устройством изображением кривой, изменяющейся в зависимости от величины тока, потребляемого стартером, и значением величины давления в цилиндрах двигателя, устанавливают необходимый режим и масштаб измерений. Подключают его к аккумуляторной батарее системы электрооборудования диагностируемого двигателя. Датчик стробоскопа соединяют со штуцером или топливопроводом ТНВД первого цилиндра. Стартером прокручивают коленчатый вал диагностируемого двигателя без его пуска, одновременно с этим стробоскоп направляют на начало экрана осциллографического устройства с той стороны, откуда появляется при прокрутке коленчатого вала двигателя кривая в форме синусоиды, максимумы которой соответствуют приходу поршней цилиндров в верхнюю мертвую точку на такте сжатия, на уровне ее максимального значения. Стробоскоп осветит точку на синусоиде. Контролируют прохождение этой точки, которая будет находиться на одной из вершин синусоиды и соответствовать приходу поршня первого цилиндра в верхнюю мертвую точку на такте сжатия, по всему экрану осциллографического устройства и при перемещении точки в противоположную часть экрана фиксируют и запоминают положение синусоиды при помощи осциллографического устройства. Выводят запомненное положение синусоиды на экран. Зная максимум синусоиды, который соответствует моменту прихода поршня первого цилиндра в верхнюю мертвую точку на такте сжатия, порядок работы цилиндров двигателя, используя специальную шкалу экрана осциллографического устройства, по максимальным значениям синусоиды, которые будут соответствовать приходу поршней разных цилиндров в верхнюю мертвую точку на такте сжатия, делают заключение о техническом состоянии деталей цилиндропоршневой группы и газораспределительного механизма отдельных цилиндров двигателя. Технический результат – повышение достоверности контроля технического состояния деталей цилиндропоршневой группы и газораспределительного механизма двигателя. 1 ил. Подробнее
Дата
2019-10-23
Патентообладатели
Нечаев Виталий Викторович
Авторы
Нечаев Виталий Викторович
Способ исследования сосудов голени при атипичной анатомии берцовых сосудов / RU 02720670 C1 20200512/
Открыть
Описание
Изобретение относится к области медицины, а именно ультразвуковой диагностике, и может быть использовано для исследования сосудов голени при анатомическом варианте строения с преобладанием малоберцовых сосудов. Проводят ультразвуковое дуплексное ангиосканирование. При этом сначала исследование проводится в положении больного лёжа на спине с согнутым и отведённым кнаружи коленом. При этом линейный датчик ставится в области медиальной лодыжки. Далее ведется вверх по медиальной поверхности голени до уровня исчезновения сосудов в В – режиме и отсутствия кровотока по ним в режиме цветового допплеровского картирования. После этого используется конвексный датчик в режиме цветового допплеровского картирования, который ставится под острым углом к проекционной линии заднебольшеберцового сосудистого пучка, после чего больной переворачивается на живот, а конвексный датчик ставится по проекционной линии между двумя точками, первая из которых располагается в 5-7 см вверх от латеральной лодыжки, а вторая на уровне медиальной лодыжки. Способ обеспечивает определение состояние кровотока при варианте строения берцовых сосудов с преобладанием малоберцового сосудистого пучка за счет техники проведения ультразвукового исследования. 5 ил. Подробнее
Дата
2019-10-11
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Рязанский государственный медицинский университет имени академика И.П. Павлова"" Министерства здравоохранения Российской Федерации "
Авторы
Калинин Роман Евгеньевич , Сучков Игорь Александрович , Шанаев Иван Николаевич
Разностно-дальномерный способ определения координат источника радиоизлучения / RU 02717231 C1 20200319/
Открыть
Описание
Изобретение относится к радиотехнике и может быть использовано в многопозиционных радиотехнических системах для определения координат заданного источника радиоизлучения (ИРИ) с кодовым и временным разделением каналов. Техническим результатом является разработка разностно-дальномерного (РД) способа определения местоположения заданного ИРИ в пространстве с временным или кодовым разделением каналов, обеспечивающих повышение точности их местоопределения. Технический результат в РД способе достигается благодаря определению на подготовительном этапе центров элементарных объемов контролируемого района (Xi, Yj, Zk), на основе которых формируют матрицу координат, для каждого элемента (Xi, Yj, Zk) всех N измерительных баз «периферийный пункт приема (ППП) - центральный пункт приема и обработки (ЦППО)» определяют эталонные значения разности времени приема сигнала τi,j,k,n, формируют N эталонных матриц, элементами каждой из которых является соответствующее координатам (Xi, Yj, Zk) эталонное значение τi,j,k,n, а в процессе работы на основе рассмотренной совокупности операций по запоминанию и анализу принимаемых сигналов выделяют излучения только заданного ИРИ, вычисляют N взаимно корреляционных функций (ВКФ) для соответствующих измерительных баз, формируют N корреляционных матриц путем замены элементов τi,j,k,n эталонных матриц на соответствующие им измеренные значения ВКФ, суммируют полученные корреляционные матрицы, а за наиболее вероятное расположение заданного ИРИ принимают координаты точки (Xi, Yj, Zk), соответствующей максимальному значению элемента суммарной корреляционной матрицы. 2 з.п. ф-лы, 18 ил., 2 табл. Подробнее
Дата
2019-10-08
Патентообладатели
Общество с ограниченной ответственностью ""Специальный Технологический Центр"" ", "федеральное государственное казенное военное образовательное учреждение высшего образования ""Военная академия связи имени Маршала Советского союза С.М. Буденного"" Министерства обороны Российской Федерации
Авторы
Наумов Александр Сергеевич , Пирогов Роман Андреевич , Рачицкий Дмитрий Валерьевич , Смирнов Павел Леонидович , Терентьев Алексей Васильевич , Царик Олег Владимирович
Способ обзорной трехкоординатной двухпозиционной латерационной радиолокации авиационно-космических объектов / RU 02717970 C1 20200327/
Открыть
Описание
Изобретение относится к области радиотехники и может быть использовано в наземных системах обзорной радиолокации. Достигаемый технический результат - определение значений дальностей, угловых координат, модулей скоростей движения авиационно-космических объектов (АКО), их пространственных курсовых углов, углов пикирования или кабрирования и траекторий движения. Технический результат достигается тем, что образуют двухпозиционную радиолокационную систему в составе активного трехкоординатного радиолокатора, расположенного в точке 0 - начале системы координат, и ретранслятора отраженных от объектов сигналов, расположенного в точке В на оси абсцисс х на расстоянии d от начала координат, рассчитывают оценочные прямоугольные координаты АКО относительно точки стояния активного радиолокатора, пересчитывают их к точке стояния ретранслятора, определяют оценочные значения азимутов и углов места объектов относительно точки стояния ретранслятора. Затем вычисляют значения дальностей RB,k АКО относительно точки стояния ретранслятора, значения абсцисс объектов для точек Ak траекторий и точные значения косинусов углов на наклонных плоскостях 0Akxk между осью абсцисс и наклонными дальностями R0,k. Вычисляют на наклонных плоскостях 0AkD, проходящих через вспомогательную точку D на оси ординат у, отстоящую от начала координат на расстояние d, значения косинусов углов между наклонными дальностями R0,k и осью ординат и значения дальностей RD,k от точки D до объектов. После этого определяют средние за М зондирований значения дальностей RD,k, вычисляют и запоминают усредненные значения прямоугольных координат, а также усредненные значения угловых координат АКО, повторяют вычисления для точек Ak+1 траекторий объектов в моменты времени tk+1, запоминают их значения и определяют приращения прямоугольных координат, точных Δxk+1,k и усредненных за время обзора Тобз=tk+1-tk=Δtk+1,k, вычисляют расстояния, пройденные АКО за интервал времени Тобз, модули скоростей движения объектов, значения их пространственных курсовых углов и углов пикирования (кабрирования). Периодически повторяя операции по обзору заданного сектора пространства, измерению первичных параметров (дальностей, угловых координат) и расчету параметров движения (курсовых углов, векторов скорости и углов пикирования или кабрирования) для всех лоцируемых АКО, строят траектории их движения, аппроксимируя их векторными отрезками . 2 ил. Подробнее
Дата
2019-10-07
Патентообладатели
"Федеральное государственное унитарное предприятие ""Ростовский-на-Дону научно-исследовательский институт радиосвязи"" "
Авторы
Косогор Алексей Александрович , Омельчук Иван Степанович , Джиоев Альберт Леонидович , Яковленко Владимир Викторович , Фоминченко Геннадий Леонтьевич
Способ определения мгновенного положения точки промаха беспилотного летательного аппарата по информации угломерного канала / RU 02721623 C1 20200521/
Открыть
Описание
Изобретение относится к области вторичной цифровой обработки сигналов и может быть использовано в телевизионных, радиолокационных, инфракрасных информационных системах (ИС) беспилотных летательных аппаратов (БПЛА) для определения положения точки их промаха относительно выбранного объекта наведения по информации только угломерного канала системы управления, в том числе, при минимальных расстояниях между БПЛА и объектом, а также в момент ослепления ИС БПЛА. Достигаемый технический результат - повышение достоверности распознавания сектора нахождения точки мгновенного промаха БПЛА в картинной плоскости объекта наведения и оценки фазовых координат взаимного перемещения объекта и БПЛА. Способ заключается в распознавании сектора нахождения точки мгновенного промаха БПЛА с одновременным формированием достоверных безусловных оценок положения линии визирования БПЛА на объект по азимуту и углу места, а также составляющих угловой скорости этой линии визирования, путем адаптивной двухмоментной параметрической аппроксимации (АДПА) неизвестной плотности вероятности фазовых координат оптимальной смесью априорно заданных законов распределения за счет учета нелинейностей в динамике фазовых координат и их измерений и учета статистической зависимости вероятностей смены секторов нахождения точки мгновенного промаха БПЛА от фазовых координат на основе измерений в угломере положения линии визирования БПЛА на объект по азимуту и углу места, формирования границ секторов картинной плоскости объекта наведения, обработки измерений угломера и показаний индикатора сектора в многоканальном фильтре, функционирующем в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния условно-марковской структуры нелинейной стохастической динамической системы при наблюдении без запаздывания на основе нового метода АДПА неизвестных плотностей вероятности смесью априорно заданных законов распределения, основанной на априорных данных в виде математической модели ММ) системы «БПЛА - объект наведения - информационная система - индикатор» со случайной скачкообразной структурой, включающей нелинейную модель динамики положения линии визирования БПЛА на объект по азимуту и углу места, а также составляющих угловой скорости этой линии визирования, нелинейную модель измерений этих фазовых координат в ИС, модель смены сектора нахождения точки мгновенного промаха БПЛА, модель индикатора сектора нахождения точки мгновенного промаха БПЛА, модель неуправляемых случайных возмущений и помех, при начальных условиях, с множеством альтернативных видов аппроксимирующих функций, и на выходе которого формируются оценки вида аппроксимирующей функции, аппроксимирующей смеси априорно заданных функций, сектора нахождения точки мгновенного промаха БПЛА, безусловных математических ожиданий фазовых координат и ковариационных матриц ошибок их оценивания. 3 табл., 12 ил. Подробнее
Дата
2019-09-30
Патентообладатели
Федеральное государственное унитарное предприятие «Государственный научно-исследовательский институт авиационных систем»
Авторы
Мужичек Сергей Михайлович , Скрынников Андрей Александрович , Федотов Александр Юрьевич , Демидов Александр Владимирович , Себряков Герман Георгиевич , Павлов Владимир Иванович , Ермолин Олег Владимирович
СТЕЛЬКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ / RU 02718262 C1 20200401/
Открыть
Описание
Группа изобретний относится к медицине, а именно к ортопедии, и может быть использована для профилактики и лечения опорно-двигательного аппарата, а также для лечения стопы и таких ее заболеваний, как плоскостопие и плосковальгусная деформация стоп. Стелька имеет углубление вытянутой формы, формирующее зону пронации и простирающееся вдоль внешней стороны стельки от места размещения латерального бугорка пяточной кости до места размещения дистального конца ногтевой фаланги пятого пальца стопы. В поперечном сечении указанного углубления наивысшая точка зоны пронации находится по существу около внешней стороны стельки. Вышеуказанные стельки могут использоваться для спортивной и повседневной обуви. Способ получения стельки включает получение изображения стопы, определение на нем положения углубления вытянутой формы, формирующего зону пронации и простирающегося вдоль внешней стороны стельки от места размещения латерального бугорка пяточной кости до места размещения дистального конца ногтевой фаланги пятого пальца стопы, и формирование стельки с указанной зоной пронации. Стельку формируют таким образом, чтобы в поперечном сечении углубления наивысшая точка зоны пронации находилась по существу около внешней стороны стельки. Изобретения обеспечивают получение положительной динамики изменения свода стопы, ускорение процесса корректировки формы стопы, частичное или полное устранение болевых ощущений в стопе и опорно-двигательном аппарате. 4 н. и 8 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-09-20
Патентообладатели
Полукаров Николай Викторович
Авторы
Полукаров Николай Викторович
КОМПЛЕКСНАЯ СИСТЕМА РЕГУЛИРОВАНИЯ ДВИЖЕНИЯ ПОЕЗДОВ / RU 02723570 C1 20200616/
Открыть
Описание
Изобретение относится к области железнодорожной автоматики для регулирования движения поездов. Система использует информацию, хранящуюся в локомотивной ЭВМ, о планах и профилях путей, путевом развитии станций, марках крестовин стрелок, границах станционных и перегонных рельсовых цепей всего участка следования локомотива в составе поезда; информацию, передаваемую на локомотив по радиоканалу со станции приема, о конфигурации установленного маршрута и информацию со станций, прилегающих к перегону, о количестве свободных впереди лежащих рельсовых цепей на локомотив, включает локомотивную ЭВМ, выполненную с возможностью расчета допустимой скорости Vд движения поезда для каждой точки пути, т.е. кривой скорости, между поездом и препятствием, а также с учетом передаваемой на локомотив информации с поста диспетчерской централизации о времени подхода или пересечения границ станций и приемоотправочных путей, ЭВМ также выполнена с возможностью определения оптимальной скорости движения поезда Vo до ближайшей станции. ЭВМ диспетчерского круга с учетом параметров пути и графика движения поездов, хранящихся в памяти, параметров поездов, передаваемых на пост диспетчерской централизации со станций формирования поездов, координат местонахождения локомотивов поездов, полученных с участием ГЛОНАСС, планирует прогнозные графики движения опаздывающих поездов, на основании которых определяет время подхода или пересечения поездом границ станций и приемоотправочных путей, управляет по каналам диспетчерской централизации стрелочными переводами и регулирует скорости движения поездов посредством радиоканалов. Система выполнена с возможностью отображения на локомотивном пульте-табло обозначений поезда с их номерами и временем подхода или пересечения границы станции или приемоотправочного пути, препятствия: поезд или граница, если до препятствия менее 6 км, кривые допустимой и оптимальной скоростей, значение скорости проследования стрелочных переводов. Достигается повышение безопасности движения. 3 ил. Подробнее
Дата
2019-09-20
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Российский университет транспорта"" (ФГАОУ ВО РУТ , РУТ "
Авторы
Полевой Юрий Иосифович , Горелик Александр Владимирович , Савченко Павел Владимирович