Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ ВВ ПРИ ТЕРМИЧЕСКИХ ВОЗДЕЙСТВИЯХ / RU 02724884 C1 20200626/
Открыть
Описание
Изобретение относится к области измерительной техники и может быть использовано для регистрации режима взрывчатого превращения взрывчатых веществ (ВВ) (наличия или отсутствия детонационного режима взрывчатого превращения ВВ) и определения давления на фронте детонационной волны при взрыве относительно малой навески ВВ (0,2÷2 г) в результате его нагрева, например, при проведении научно-исследовательских работ. Предложено устройство определения параметров взрывчатого превращения при термических воздействиях, содержащее корпус, в котором в определенной последовательности установлены образец ВВ, втулка, нагревательное устройство, термопара, измерительные приборы, соединенные с приборами, преобразующими и обрабатывающими измерительные сигналы. Нагревательное устройство установлено на торцевой поверхности корпуса, корпус выполнен составным с образованием полости, в которой установлена чаша с образцом ВВ, закрытая крышкой, имеющей кольцевую проточку закрепления термопары, проходящей в осевом канале нагревательного элемента, установленного в верхней части корпуса, в нижней части корпуса соосно с образцом ВВ установлена втулка измерительная, прижатая одним концом к чаше, в которой размещены чувствительные элементы, к дну чаши прижата метаемая стальная пластинка, соразмерная отверстию втулки, при этом толщина стенки чаши выбрана из соотношения: 20 мм/г>δст/Мвв>15 мм/г, где δст - толщина стенки чаши со стороны втулки измерительной, Мвв - масса ВВ в тротиловом эквиваленте. Технический результат - получение конструктивно простого устройства, позволяющего регистрировать факт возникновения детонации в ВВ в условиях нагрева и определения давления на фронте детонации, обеспечивающего преимущественно односторонний нагрев ВВ, изменение режима нагрева в широком диапазоне, включая высокие скорости нарастания температуры, изменение давления разрушения реакционной камеры, степени заполнения реакционной камеры и условия отвода продуктов разложения. 4 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-12-25
Патентообладатели
"Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии ""Росатом"" , Федеральное государственное унитарное предприятие ""Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики"" "
Авторы
Игнатов Олег Леонидович , Комиссаров Александр Викторович , Краснов Дмитрий Валериянович
Способ оценки температуры вязко-хрупкого перехода металла / RU 02719797 C1 20200423/
Открыть
Описание
Изобретение относится к испытательной технике и используется для определения температуры вязко-хрупкого перехода и регистрации сигнала акустической эмиссии на основе классификации импульсов с использованием искусственной нейронной сети. Сущность: образец, установленный на столе твердомера, подвергают индентированию при разных температурах с регистрацией сигнала акустической эмиссии, полученный сигнал акустической эмиссии подвергают обработке с выделением отдельных импульсов, определением их параметров и последующей их классификацией с использованием обученной искусственной нейронной сети, а за температуру вязко-хрупкого перехода принимают температуру, при которой количество импульсов, характеризующих хрупкий и вязкий механизмы разрушения, совпадают. Технический результат: повышение точности оценки температуры вязко-хрупкого перехода металла. 4 ил., 1 табл. Подробнее
Дата
2019-12-09
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Нижегородский государственный технический университет им. Р.Е. Алексеева"" "
Авторы
Кабалдин Юрий Георгиевич , Хлыбов Александр Анатольевич , Аносов Максим Сергеевич , Шатагин Дмитрий Александрович , Рябов Дмитрий Александрович
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НАЧАЛА ИЗМЕНЕНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ПРЕДЕЛЬНОЙ ТЕМПЕРАТУРЫ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ / RU 02722119 C1 20200526/
Открыть
Описание
Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение времени, через равные промежутки времени пробу окисленного смазочного материала взвешивают, часть пробы фотометрируют и определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности. По данным показателям термоокислительной стабильности вычисляют количество тепловой энергии, поглощенной продуктами окисления, продуктами испарения, и суммарную поглощенную тепловую энергию при термостатировании смазочного материала, которое определяют произведением значения температуры, умноженной на время испытания и значение соответствующего показателя термоокислительной стабильности. Вычисляют десятичные логарифмы поглощенной тепловой энергии для каждого показателя и строят графические зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от десятичного логарифма времени и температуры испытания. По этим зависимостям определяют значения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при заданном десятичном логарифме времени испытания и температурах испытания. Также определяют значения десятичного логарифма времени испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре. Кроме того, определяют значения десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре. На основании полученных данных для каждого показателя строят дополнительные графические зависимости. При этом по зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания определяют температуру начала изменения десятичного логарифма поглощенной тепловой энергии при заданном десятичном логарифме времени испытания. По зависимости десятичного логарифма времени испытания от температуры испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности определяют предельную температуру работоспособности исследуемого смазочного материала, а по зависимости десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания прогнозируют начало изменения десятичного логарифма поглощенной тепловой энергии для других температур. Технический результат - повышение информативности контроля смазочных материалов для сравнения их качества и выбора. 3 ил., 1 табл. Подробнее
Дата
2019-12-04
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Сибирский федеральный университет"" "
Авторы
Ковальский Болеслав Иванович , Лысянникова Наталья Николаевна
Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования / RU 02721097 C1 20200515/
Открыть
Описание
Изобретение относится к области измерительной техники и касается способа бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования. Способ заключается в формировании светового пучка широкополосного излучения, идущего от объекта, фокусировке излучения и формировании изображения объекта, регистрации изображения объекта матричным приемником излучения и цифровой обработке изображения. Разделение светового пучка осуществляется с помощью линзового растра, установленного между оптической системой и матричным приемником излучения и состоящего из заданного числа линз, фокусирующих изображения на матричном приемнике излучения. Регистрация пространственно разнесенных спектральных изображений объекта выполняется установленным перед матричным приемником излучения растром, состоящим из светофильтров, число и положение которых соответствует числу и положению линз в линзовом растре. Кривые пропускания светофильтров соответствуют заданным положениям спектральных каналов. Технический результат заключается в обеспечении возможности определения распределения температуры и излучательной способности по поверхности объектов без механического или спектрального сканирования. 1 ил. Подробнее
Дата
2019-12-02
Патентообладатели
Федеральное государственное бюджетное учреждение науки Научно-технологический центр уникального приборостроения Российской академии наук
Авторы
Батшев Владислав Игоревич , Мачихин Александр Сергеевич , Неверов Семен Михайлович
СПОСОБ ОПРЕДЕЛЕНИЯ МЕЖФАЗНОГО НАТЯЖЕНИЯ МЕЖДУ ДВУМЯ ФЛЮИДАМИ / RU 02722896 C1 20200604/
Открыть
Описание
Изобретение относится к способам определения межфазного натяжения (МН) между двумя флюидами. Техническим результатом является повышение точности определения МН между двумя флюидами. В соответствии с изобретением предварительно определяют плотность флюидов при заданных давлении и температуре и проводят сравнительный анализ содержания поверхностно-активных веществ (ПАВ) в рассматриваемых флюидах. По результатам анализа выбирают флюид, содержащий большее количество ПАВ, в качестве внешнего флюида, а флюид, содержащий меньшее количество ПАВ, в качестве внутреннего флюида. Заполняют ренттенопрозрачную термоустойчивую ячейку высокого давления внешним флюидом и устанавливают в ячейке заданные давление и температуру. По меньшей мере один раз закачивают в заполненную внешним флюидом ячейку внутренний флюид и создают внутри внешнего флюида каплю внутреннего флюида заданного размера. После формирования капли внутреннего флюида по меньшей мере один раз осуществляют рентгеновскую съемку капли внутреннего флюида во внешнем флюиде и получают по меньшей мере одну проекционную рентгенограмму. Осуществляют обработку полученных проекционных рентгенограмм и на основе анализа формы капли внутреннего флюида на проекционной рентгенограмме рассчитывают значение межфазного натяжения между внешним и внутренним флюидами. 13 з.п. ф-лы, 7 ил. Подробнее
Дата
2019-11-29
Патентообладатели
Шлюмберже Текнолоджи Б.В.
Авторы
Якимчук Иван Викторович , Стукан Михаил Реональдович , Коробков Дмитрий Александрович , Плетнева Вера Анатольевна
Способ определения поправок к глубинам, измеренным многолучевым эхолотом при съемке рельефа дна акватории, и устройство для определения поправок к глубинам, измеренным многолучевым эхолотом при съемке рельефа дна акватории / RU 02724366 C1 20200623/
Открыть
Описание
Изобретение относится к области гидрографии, в частности к способам и техническим средствам определения поправок к глубинам, измеренных многолучевым эхолотом при съемке рельефа дна акватории. Техническим результатом является существенное упрощение процесса и уменьшение трудоемкости определения поправок к глубинам, измеренным многолучевым эхолотом по всему его измеряемому диапазону, за счет отсутствия по сравнению с прототипом необходимости использования в заявленном изобретении нормированных измерительных приборов (двух датчиков гидростатического давления и температуры воды) для обеспечения получения метрологических характеристик измеренных эхолотом глубин. Заявленное устройство снабжено вычислительным комплексом для определения искомых глубин и искомых геодезических координат их места, а также искомых поправок к измеренным глубинам, реализующим новые формульные зависимости, вход которого через блок управления соединен с выходами измерительного приемного блока, приемника спутниковой радионавигационной системы типа GPS или «ГЛОНАСС», морской интегрированной малогабаритной системы типа «Кама», датчика скорости распространения звука в воде типа ТЗО-2, а выход его с входом блока определения поправок к глубинам, измеренных многолучевым эхолотом при съемке рельефа дна акватории. 2 н.п. ф-лы, 2 ил. Подробнее
Дата
2019-11-28
Патентообладатели
Чернявец Владимир Васильевич
Авторы
Чернявец Владимир Васильевич
СПОСОБ МОНИТОРИНГА ТЕМПЕРАТУРЫ ОБМОТКИ ЭЛЕКТРОМАГНИТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ / RU 02718597 C1 20200408/
Открыть
Описание
Изобретение относится к электротехнике и может быть использовано для управления приводными электромагнитами (ЭМ) клапанов и коммутационных аппаратов. Технический результат состоит в повышении помехозащищенности и точности за счет исключения влияния изменения напряжения питания ЭМ и индуктивности обмотки на определение температуры обмотки, также в снижении требований к производительности микроконтроллера и объему необходимой памяти. Для предотвращения превышения температуры обмотки ЭМ допустимой максимальной величины необходимо производить ее мониторинг. Предложено использование управляющих сигналов рабочего цикла ЭМ, содержащего участок срабатывания и участок удержания. На участке удержания формируют управляющий сигнал импульсной модуляции и, таким образом, стабилизируют ток через обмотку электромагнита на уровне, необходимом для гарантированного удержания электромагнита во включенном состоянии. На участке удержания при установившемся среднем значении тока в обмотке определяют среднее значение напряжения на обмотке, сохраняют это значение, полученное при первом включении электромагнита, когда температура обмотки равна известному значению температуры окружающей среды, которое также сохраняют. В каждом последующем рабочем цикле определяют текущее среднее значение напряжения на обмотке на участке удержания и определяют значение температуры обмотки на текущем рабочем цикле по формуле ! ! где Tt - значение температуры обмотки в текущем рабочем цикле; Т0 - значение температуры окружающей среды при первом включении ЭМ; U0 - среднее значение напряжения на обмотке при первом включении ЭМ; Ut - среднее значение напряжения на обмотке в текущем рабочем цикле; α - температурный коэффициент сопротивления провода обмотки. 2 н. и 4 з.п. ф-лы, 5 ил. Подробнее
Дата
2019-11-26
Патентообладатели
"Акционерное общество""Корпорация ""Московский институт теплотехники"" "
Авторы
Иванов Сергей Михайлович , Разумов Алексей Васильевич , Сонин Александр Федорович
Система изменения плавучести и дифферента АНПА с автоматическим управлением / RU 02724920 C1 20200626/
Открыть
Описание
Изобретение относится к области подводного судостроения, в частности к системам управления плавучестью и дифферентом подводных устройств. Система изменения плавучести и дифферента подводного технического средства содержит две независимые размещенные в оконечностях уравнительно-дифферентные цистерны для приема забортной воды, высоконапорные электронасосы, трубопроводы с запорной арматурой, блок автоматики с дистанционным управлением. Уравнительно-дифферентные цистерны выполняют функцию как уравнительных, так и дифферентных цистерн. Уравнительно-дифферентные цистерны не связаны с отсеками, в которых находятся, и выполнены с учетом повышения давления из-за сжатия находящегося внутри воздуха и размещения в сжимаемом воздушном пространстве остальных элементов системы. Давление в цистернах изменяется пропорционально их степени заполнения, что позволяет определить, насколько заполнена цистерна, через определение давления с учетом поправок на изменение температуры и влажности воздуха. Достигается изменение дифферента компактности и расширения ее функциональности. 1 ил. Подробнее
Дата
2019-11-15
Патентообладатели
Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Авторы
Почекаев Александр Валентинович , Перевозчиков Владимир Юрьевич , Клинов Владимир Анатольевич , Лобачев Сергей Юрьевич
Способ определения степени сшивки при исследовании перекрестно-сшитых поликапролактонов / RU 02718130 C1 20200330/
Открыть
Описание
Изобретение относится к области химии полимеров, в частности к определению степени сшивки. Способ определения степени сшивки при исследовании перекрестно-сшитых поликапролактонов заключается в том, что сравнивают характеристический параметр исследуемого и эталонного образцов и оценивают степень сшивки исследуемого образца из зависимости между известной степенью сшивки эталонного образца и его характеристического параметра по градуировочным графикам, для чего образец перекрестно-сшитого поликапролактона в нанограммовом количестве помещают на чип-сенсор быстрого сканирующего калориметра, проводят предварительное нагревание образца до температуры выше температуры плавления с последующим охлаждением, при этом в качестве характеристического параметра используют полупериод кристаллизации, для определения которого после предварительного нагревания и охлаждения образца осуществляют быстрое нагревание образца до температуры выше температуры плавления со скоростью не менее 5000 К/c; нагретый образец охлаждают до минус 80°C со скоростью не менее 5000 К/c и выдерживают при минус 80°C в течение 1 с; далее проводят нагревание до 0°C со скоростью не менее 5000 К/с; далее выдерживают образец при 0°C в течение 0,01 с, затем нагревают до температуры выше температуры плавления со скоростью 1000 К/с; далее неоднократно повторяют последовательность действий, начиная с этапа охлаждения образца до минус 80°C со скоростью не менее 5000 К/c и заканчивая этапом нагревания выше температуры плавления со скоростью 1000 К/с, при этом на этапе выдерживания образца при 0°C изменяют время выдерживания при каждом повторении последовательности действий - 0,02; 0,05; 0,1 с и далее линейно по логарифмической шкале до 500 с; далее рассчитывают общую скрытую энтальпию плавления при всех временах выдерживания путем интегрирования полученных калориметрических кривых нагревания; далее рассчитывают отношение общей скрытой энтальпии плавления при данном времени выдерживания к максимально возможному значению общей скрытой энтальпии плавления для данного образца; далее определяют величину полупериода кристаллизации t1/2, соответствующую времени выдерживания, необходимому для достижения степени кристалличности полимера 50%; далее определяют степень сшивки исследуемого образца по градуировочному графику в координатах lg(t1/2) - степень сшивки N [моль/см3], построенному на основе исследования эталонных образцов. Техническим результатом является определение степени сшивки перекрестно-сшитого поликапролактона с использованием минимального количества образца полимера, а также уменьшение времени и достижение высокой точности определения. 5 ил. Подробнее
Дата
2019-10-31
Патентообладатели
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский федеральный университет"
Авторы
Седов Игорь Алексеевич , Абдуллин Альберт Радикович
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ПРОТИВОИЗНОСНЫХ ПРИСАДОК НА ОСНОВЕ ЖИРНЫХ КИСЛОТ В ДИЗЕЛЬНЫХ ТОПЛИВАХ / RU 02723974 C1 20200618/
Открыть
Описание
Изобретение относится к области контроля качества дизельных топлив, преимущественно для определения противоизносных присадок на основе жирных кислот. Способ определения количества противоизносной присадки на основе жирных кислот в дизельных топливах включает отбор пробы, ИК-спектрометрирование и последующее определение концентрации присадки по градуировочному графику, построенному в координатах высота пика на волновом числе 1710 см-1 - концентрация присадки, перед ИК-спектрометрированием хроматографическую колонку заполняют 1 г сорбента, в качестве которого используют силикагель, с размером частиц 40-100 мкм, диаметром пор 60 , смачивают гексаном и пропускают 50 см3 пробы топлива, создавая разрежение 13-40 мбар, после чего дополнительно последовательно пропускают через сорбент 2 см3 гексана, затем 10 см3 этанола, собирая экстракты в разные емкости, экстракт после пропускания этанола выдерживают при температуре 50-60°С и вакууме 10-15 мбар в течение 5 мин, по окончании которых доводят до объема 5 см3 тетрахлорметаном и полученный раствор подвергают ИК-спектрометрированию. Техническим результатом изобретения является расширение номенклатуры способов определения присадок в дизельных топливах. 1 ил., 10 табл. Подробнее
Дата
2019-10-30
Патентообладатели
"Федеральное автономное учреждение ""25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации"" "
Авторы
Шарин Евгений Алексеевич , Чернышева Анна Владимировна , Щербаков Павел Юрьевич
СПОСОБ ИСПЫТАНИЯ НА ПОЛЗУЧЕСТЬ КЛЕЕВОГО СОЕДИНЕНИЯ ПРИ СДВИГЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ / RU 02724153 C1 20200622/
Открыть
Описание
Изобретение относится к области определения механических и реологических свойств клеевых композиций. Сущность: склеенный образец размещают в обойме, испытывают его на ползучесть, регистрируют текущие значения деформации клеевой композиции и строят кривую ползучести, по которой судят о характеристиках ползучести клеевой композиции, текущее значение деформации клеевой композиции регистрируется расстоянием между линзой и стеклянной пластинкой методом колец Ньютона, наблюдаемых в монохроматическом свете с помощью цифрового микроскопа, соединенного с персональной ЭВМ (ПЭВМ) для их обработки, при нормальном к поверхности пластины падении световых лучей. Устройство содержит герметичную камеру, в которой размещены обойма для установки склеенных образцов, рычаг для нагружения образцов с балансировочными грузами, устройство терморегулирования с датчиком температуры с цифровым отображением текущей температуры в камере и нагреватель. В камере установлены клапаны для подвода и отвода охлаждающей жидкости для низкотемпературных испытаний. На рычаге расположена стеклянная пластина. Линза размещена на стойке на одной оптической оси с монохроматором и цифровым микроскопом, освещение линзы и стеклянной пластины производится точечным источником света. Нагружение склеенных образцов осуществляется эталонными грузами, размещенными на рычаге, регистрирование колец Ньютона осуществляется цифровым микроскопом с последующей передачей видеосигнала на ПЭВМ в дискретном или непрерывном режимах, а в ПЭВМ с помощью программного обеспечения производится анализ видеоизображения колец Ньютона с последующим построением кривой «деформация ползучести - время нагружения». Технический результат: повышение точности и уменьшение трудоемкости измерения ползучести при испытаниях клеевых композиций внахлестку. 2 н.п. ф-лы, 1 ил. Подробнее
Дата
2019-10-28
Патентообладатели
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ НАУЧНЫЙ ЦЕНТР АГРОБИОТЕХНОЛОГИЙ РОССИЙСКОЙ АКАДЕМИИ НАУК
Авторы
Иванов Николай Михайлович , Коптева Ирина Васильевна , Вахрушев Владимир Владимирович , Немцев Анатолий Егорович
ИМИТАЦИОННАЯ СИСТЕМА КОНТРОЛЯ КАЧЕСТВА МОТОРНОГО МАСЛА ТРАНСПОРТНЫХ СРЕДСТВ / RU 02724072 C1 20200619/
Открыть
Описание
Изобретение относится к двигателестроению, в частности к устройствам для стендовых испытаний двигателей внутреннего сгорания (ДВС) с принудительным зажиганием с жидким и газообразным топливом. Полезная модель может быть использована для визуальной демонстрации работы электронных блоков управления двигателем, а в частности для наблюдения за контролем качества масла в реальном времени. Представлена имитационная система контроля качества моторного масла транспортных средств, содержащая датчик частоты вращения коленчатого вала, датчик массового расхода топлива, датчик давления газов в цилиндре двигателя, датчик положения дроссельной заслонки, датчик детонации, датчик угловых отметок коленчатого вала, датчик концентрации кислорода, датчик массового расхода воздуха и газоанализатор вредных выбросов в продуктах сгорания, установленные на испытуемом двигателе, электронный блок управления испытуемым двигателем, аналого-цифровой преобразователь, персональный компьютер с монитором, модель электронного блока управления макетом двигателя, ее интерфейсом связи с персональным компьютером и монитором, имитатор ключа зажигания, генератор-имитатор сигналов вышеназванных датчиков, коммутатор указанных сигналов, блок задания режимов. Система дополнительно снабжена датчиком контроля качества моторного масла, датчиком температуры моторного масла и электронным блоком оценки результатов измерений данных датчиков. Изобретение обеспечивает определение влияния качества масла на эксплуатационно-технические показатели транспортных средств для осуществления диагностических, исследовательских, доводочных и лабораторных испытаний. 1 ил. Подробнее
Дата
2019-10-14
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Санкт-Петербургский горный университет"" "
Авторы
Сафиуллин Равиль Нуруллович , Сорокин Кирилл Владиславович
Способ одновременного определения токсичных компонентов в имплантатах из полилактид-гликолида (PLGA) / RU 02716831 C1 20200317/
Открыть
Описание
Изобретение относится к аналитической химии, а именно к способам количественного определения токсичных компонентов в имплантатах на основе полилактид-гликолида (PLGA) методом газовой хроматографии. Способ одновременного определения в одной пробе количественного определения токсичных компонентов (ацетона, этилацетата, лактида) в имплантатах из PLGA, в том числе скаффолдах для культивирования клеток на основе полилактид-гликолида PLGA и фосфатов кальция ФК (гидроксиапатита Ca10(PO4)6(OH)2 и β-трикальций фосфата Са3(РО4)2), методом газовой хроматографии на капиллярной колонке на основе 100% полиэтиленгликоля включает фильтрацию раствора образца скаффолда в хлороформе с использованием шприцевого фильтра с размером пор 0,45 мкм, хроматографирование полученного раствора с использованием пламенно-ионизационного детектора с температурой испарителя и детектора 250°С и температурным режимом колонки: плато 80°С – 2 мин, нагрев 10°С/мин до 170°С – плато 1 мин, нагрев 20°С/мин до 220°С – плато 17,5 мин; давлением газа-носителя (азота) 40 кПа, делением потока 1:20, в испаритель микрошприцем вводят 0,5 мкл полученного раствора, строят градуировочные зависимости для ацетона (в диапазоне 8·10-4–0,2%), лактида (в диапазоне 6·10-3–0,25%), этилацетата (в диапазоне 1·10–4–0,075%), по которым рассчитывают содержание токсичных компонентов в пробе. Техническим результатом является возможность одновременного в одной пробе количественного определения ацетона, этилацетата, лактида в имплатнатах и скаффолдах. 3 ил., 6 табл. Подробнее
Дата
2019-09-27
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский Томский государственный университет"" "
Авторы
Понарин Никита Владимирович , Покровская Любовь Анатольевна
Способ определения белков с помощью гигантского комбинационного рассеяния с использованием криозолей плазмонных наночастиц / RU 02717160 C1 20200318/
Открыть
Описание
Изобретение относится к области определения биомолекул с помощью эффекта гигантского комбинационного рассеяния (ГКР) и может быть использовано в медицинской диагностике для определения белков-маркеров различных патологий, в том числе с использованием технологии «лаборатория на чипе». Способ определения белков включает приготовление твердофазного ГКР-субстрата, представляющего собой каплю смеси золя плазмонных наночастиц с раствором содержащего белок анализируемого образца, замороженную на подложке из теплопроводного не имеющего собственного КР-спектра материала; воздействие на полученный субстрат лучом лазера при охлаждении ГКР-субстрата до температуры, обеспечивающей существование субстрата в твердом состоянии, запись ГКР-спектра и его матобработку. Технический результат состоит в повышении интенсивности и увеличении соотношения сигнал/шум получаемых спектров, в т.ч. в присутствии примесей, и в повышении стабильности получаемых результатов анализа во времени. 8 з.п. ф-лы, 7 ил. Подробнее
Дата
2019-09-19
Патентообладатели
Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Авторы
Курочкин Илья Николаевич , Еременко Аркадий Вениаминович , Дурманов Николай Николаевич , Моргунов Валерий Васильевич , Рыкова Валентина Александровна , Евтушенко Евгений Геннадьевич , Агафонов Павел Владимирович , Ковалев Александр Васильевич
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ГАЛОГЕНИДОВ ЛИТИЯ В ЛИТИЕВОМ ЭЛЕКТРОЛИТЕ ДЛЯ ТЕПЛОВЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА / RU 02715225 C1 20200226/
Открыть
Описание
Изобретение относится к аналитической химии, а именно к методам определения концентрации компонентов электролитов для тепловых химических источников тока (ТХИТ), и может быть использовано для определения галогенидов щелочных металлов при их совместном присутствии в твердых литиевых электролитах. Для этого проводят предварительное измельчение перетиранием твердого образца электролита, затем отобранные и измельченные пробы твердого литиевого электролита направляют на раздельные этапы последовательного определения фторидов, бромидов и хлоридов. Для определения массовой доли фторидов используют гравиметрический метод после предварительного сплавления измельченной пробы с комплексным реактивом из углекислых солей калия и натрия и последующим выщелачиванием смеси горячей дистиллированной водой. Осадок примесных соединений алюминия и кремния отделяют и нейтрализуют соляной (HCl), затем азотной кислотами (HNO3) при температуре не более 40°С. Фториды концентрируют осаждением раствором уксуснокислого свинца, осадок фторхлорида свинца промывают при рН 3,5 - 4,6, а затем сушат и определяют массовую долю фторидов по формуле: ! , ! где CF - массовая доля фторидов, %; mF - масса полученного осадка фторхлорида свинца, г; mнF - масса навески пробы электролита, взятая при анализе на содержание фторидов, г; 0,0726 - коэффициент пересчета массы фторхлорида свинца на массу фторида; 200 - вместимость мерной колбы с раствором электролита, см3; 100 - объем аликвоты раствора электролита, см3. При отсутствии алюминийсодержащего загустителя в электролите массовую долю фторидов определяют методом потенциометрического титрования с фторидселективным электродом. Для этого навеску измельченной пробы растворяют в разбавленном растворе HCl, в который помещают фторид-селективный и вспомогательный электроды и при постоянном перемешивании на магнитной мешалке проводят титрование фторидов из стеклянной бюретки раствором лантана азотнокислого до точки эквивалентности по рН-метру-иономеру; вычисление массовой доли фторидов проводят по формуле: ! ! где CF - массовая доля фторидов, %; VLa - объем раствора лантана азотнокислого, израсходованный на титрование, см3; mнF - масса навески пробы электролита, взятая при анализе на содержание фторидов в отсутствие алюминия, г; TLa-F - массовая концентрация раствора лантана азотнокислого по фториду, мг/см3. Для определения массовой доли бромидов в электролите готовят водный раствор измельченной пробы твердого литиевого электролита с добавлением концентрированной серной кислоты (Н2SO4) с последующим добавлением раствора со смесью калия йодноватокислого и натрия серноватистокислого. Взаимодействие бромида лития с йодистым калием приводит к получению брома, его удалению кипячением и титрованием избытка йодистого калия для определения массовой доли бромидов йодометрическим методом по формуле: ! ! где СBr - массовая доля бромидов в электролите, %; 10 - объем добавленного в избытке раствора калия йодноватокислого, см3; mнBr - масса навески пробы электролита, взятая при анализе на содержание бромидов, г; СK-Br - массовая концентрация раствора калия йодноватокислого по бромиду, мг/см3. Для определения массовой доли хлоридов в электролите определяют разницу между суммарной величиной массовых долей бромидов и хлоридов, определенных методом меркурометрического титрования в кислой среде с индикатором дифенилкарбазоном, и предварительно установленной массовой долей бромидов в пробе, установленной при титровании растровом ртути (I) азотнокислой. Затем по разности объемов рассчитывают израсходованный объем ртути (I) азотнокислой на титрование хлоридов и определяют соответствующую этому значению массовую долю хлоридов в литиевом электролите по формуле: ! , ! где CCl - массовая доля хлоридов в электролите, %; - объем раствора ртути (I) азотнокислой, израсходованный на титрование суммы хлоридов и бромидов, см3; - объем раствора ртути (I) азотнокислой, израсходованный на титрование бромидов, см3: ! ! - массовые концентрации раствора ртути азотнокислой по хлориду и по бромиду, мг/см3; - массовая доля бромидов в электролите, %; mнCl - навеска электролита, взятая при определении хлоридов, г. Изобретение обеспечивает повышение точности определения индивидуальных концентраций галогенидов лития в присутствии солей алюминия в твердом литиевом электролите. 7 табл., 2 пр. Подробнее
Дата
2019-09-16
Патентообладатели
"Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии ""Росатом"" , Федеральное государственное унитарное предприятие ""Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики"" "
Авторы
Жогова Кира Борисовна , Вахнина Ольга Викторовна , Конопкина Ирина Андреевна , Герасимова Наталья Васильевна , Анникова Светлана Александровна , Татурина Наталья Владимировна
Способ измерения объемного расхода в вихревых расходомерах / RU 02717701 C1 20200325/
Открыть
Описание
Изобретение относится к измерительной технике и может быть применено в вихревых счетчиках расходомерах для измерения объемного расхода с использованием вихрей Кармана. Cпособ измерения объемного расхода в вихревых расходомерах заключается в создании в измерительном канале счетчика регулярной последовательности вихрей, регистрации каждого вихря в виде электрического импульса, измерении текущих значений частоты f следования импульсов, а также температуры и давления вещества, вычислении косвенным способом текущего значения кинематической вязкости вещества ν: для жидкости - по температуре, для газа или пара - по температуре и давлению. Вычисление объемного расхода Q производится в соответствии с выражением Q=f⋅C/Sh, с использованием измеренной частоты вихрей f, постоянного коэффициента С, равного геометрической константе измерительного канала и рассчитанного текущего значения числа Sh Струхаля на основе линеаризованного выражения зависимости числа Sh от обратного значения безразмерного числа Ro, что позволяет расширить диапазон и повысить точность измерения расходов. Коэффициенты а и b для линеаризованной зависимости Sh(1/Ro) определяются методом наименьших квадратов при калибровке вихревого расходомера по заданным реперным точкам расхода. Объем W протекшего вещества определяется как произведение суммы импульсов, зафиксированных за время измерения, на вес импульса, W=ΣN⋅Pи, при этом вес импульса, поступающий на выход счетчика расходомера, может иметь любое заданное фиксированное значение, равное объему вещества. Использование для расчета расхода линеаризованного выражения для числа Sh Струхаля вида Sh=a+b/Ro, как линейной зависимости числа Sh от обратного значения безразмерного числа Ro, коэффициенты а и b которой вычисляются с помощью метода наименьших квадратов, позволяет расширить диапазон измерения для вихревых расходомеров для заданной погрешности измерения. Оно же дает возможность уйти от вычисления текущего значения Sh через аппроксимирующую зависимость числа Sh Струхаля через число Рейнольдса - Sh (Re), вносящую дополнительные погрешности в измерение расхода вследствие определения числа Re через дополнительную аппроксимирующую функцию Re(Ro), обеспечивая тем самым повышение точности измерений. Вычисление расхода, выполняемое с использованием параметров среды (безразмерное число Ro), частоты f вихрей и геометрических констант измерительного канала (число С), позволяет уйти при расчетах от весового коэффициента, неравного в общем случае отношению C/Sh, что дает возможность использовать любой вес поступающего на выход вихревого расходомера импульса, равного объему протекшего вещества, и расширить диапазон измерений. Технический результат - повышение точности измерений при расширении эксплуатационных возможностей вихревого расходомера. 4 ил. Подробнее
Дата
2019-09-10
Патентообладатели
"Акционерное общество ""Промышленная группа ""Метран"" "
Авторы
Богданов Владимир Дмитриевич , Дружков Александр Михайлович
МАГНИТНЫЙ ЛЮМИНЕСЦЕНТНЫЙ ПИГМЕНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ / RU 02711192 C1 20200115/
Открыть
Описание
Изобретение относится к химической промышленности и может быть использовано в полиграфических изделиях. Магнитный люминесцентный пигмент на основе алюмоферрата стронция, кобальта, каждая частица которого обладает как магнитными свойствами, так и стоксовой люминесценцией в спектральном диапазоне 450-750 нм, возникающей под действием возбуждающего излучения, лежащего в спектральном диапазоне длин волн 360-1360 нм. Химический состав пигмента соответствует следующей эмпирической формуле: (Sr1-X-Y-M CoXEuYMgM)(Al1-ZFeZ)2O4, где: 0,2≤Х≤0,8, 0,0001≤Y≤0,10, 0≤М≤0,3, 0,2≤Z≤0,8. Способ получения магнитного люминесцентного пигмента включает смешение компонентов шихты, содержащей оксиды алюминия, железа, кобальта, магния, карбонат стронция, водные растворы борной кислоты и хлорида европия. После чего шихту гомогенизируют, сушат при температуре 120-240°С до состояния пыления и прокаливают при температуре 1150-1350°С в течение 4-12 часов. Обеспечивается получение пигмента, в каждой частице которого совмещены магнитные и люминесцентные свойства, что позволяет вводить в оборот новые комплексные машиночитаемые и визуализируемые защитные метки и методы их определения. 4 н. и 2 з.п. ф-лы, 1 табл., 19 пр. Подробнее
Дата
2019-08-28
Патентообладатели
"Акционерное общество ""Гознак"" "
Авторы
Павлов Игорь Васильевич , Курятников Андрей Борисович , Федорова Елена Михайловна , Воскресенская Ольга Игоревна , Певцова Лариса Александровна , Торгашова Александра Александровна , Корнилов Георгий Валентинович , Щепин Виктор Геннадиевич , Казарцев Игорь Сергеевич , Воробьев Виктор Андреевич , Манаширов Ошир Яизгилович , Леденева Екатерина Андреевна , Синельников Борис Михайлович
Способ получения титаната натрия / RU 02716186 C1 20200306/
Открыть
Описание
Изобретение относится к технологии получения титаната натрия Na2Ti3O7, который может быть использован в качестве эффективного анодного материала литиевых и натриевых источников тока, фотокатализатора в ультрафиолетовом и видимом диапазоне света, газочувствительного сенсора для определения влажности воздуха, сепаратора химического источника тока, предотвращающего замыкание электродов и обеспечивающего ионный ток в электролите. Способ включает получение реакционной смеси, содержащей водный раствор гидроксида натрия и титансодержащего соединения, гидротермальную обработку, промывание водой и сушку, отличающийся тем, что в качестве титансодержащего соединения используют хлорид титана состава TiCl3 и 3,5-15 М водный раствор гидроксида натрия при молярном соотношении компонентов, равном TiCl3 : NaOH = 1:(10÷40), а гидротермальную обработку осуществляют при температуре 140–160°С и избыточном давлении 360–617 кПа в течение 24-26 ч. Технический результат заключается в простоте и технологичности способа, обеспечивающего высокую чистоту конечного продукта за счет получения однофазного продукта, не содержащего примесных фаз. 1 ил., 3 пр. Подробнее
Дата
2019-08-28
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Авторы
Захарова Галина Степановна , Фаттахова Зилара Амирахматовна
Способ прямого определения свинца в морской воде / RU 02718072 C1 20200330/
Открыть
Описание
Изобретение относится к способу прямого определения свинца в морской воде методом атомно-абсорбционной спектрометрии высокого разрешения с электротермической атомизацией с одновременным устранением влияния фоновых помех, вызванных матрицей морской воды. Используют смешанный модификатор нитрат бария – фтороводородная кислота, оптимальное соотношение масс составляет 60 мкг Ba(NO3)2 и 1,52 мкг HF, при следующих условиях проведения анализа: температура пиролиза первой стадии 350°С, второй - 600°С, атомизации - 1200°С, длина волны – 283,3060 нм. Предел обнаружения – 0,0003 мг/дм3. Технический результат заключается в повышении точности определения свинца в морской воде. 2 табл. Подробнее
Дата
2019-08-23
Патентообладатели
Федеральное государственное автономное образовательное учреждение высшего образования «Северный федеральный университет имени М. В. Ломоносова»
Авторы
Соболев Никита Андреевич , Иванченко Николай Леонидович , Кожевников Александр Юрьевич , Быстрицкая Евгения Александровна , Кошелева Анна Евгеньевна
Способ инструментального определения мощности и границы залегания органогенных горизонтов в почвенном профиле на основе ИК съемки / RU 02717388 C1 20200323/
Открыть
Описание
Изобретение относится к области почвоведения и касается способа инструментального определения мощности и границы залегания органогенных горизонтов в почвенном профиле. Способ включает в себя цифровую съемку почвенного профиля в инфракрасном диапазоне спектра аппаратурой, позволяющей выполнять пересчет цифровых значений пикселей изображения в двумерный массив данных радиояркостной температуры. Границу залегания органогенных горизонтов определяют как семейство точек по столбцам изображения, в которых функция линейной регрессии скачкообразно меняет тангенс угла наклона. Съемка проводится перпендикулярно стенке разреза с расстояния, равного 40-60 см, в диапазоне от 7,5 до 14 мкм, с радиометрическим разрешением не хуже 0,1°С и пространственным разрешением не ниже 1×1 см. Анализ и построение схемы профиля проводят путем обработки двумерных числовых массивов данных табличным процессором. Технический результат заключается в обеспечении возможности установления визуально неразличимой границы горизонтов и автоматического построения схемы органогенного горизонта почвенного профиля. 2 ил. Подробнее
Дата
2019-08-19
Патентообладатели
"Федеральное государственное бюджетное научное учреждение ""Федеральный исследовательский центр ""Красноярский научный центр Сибирского отделения Российской академии наук"" "
Авторы
Пономарева Татьяна Валерьевна , Пономарёв Евгений Иванович