Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
УСТРОЙСТВО ДЛЯ ТЕРМОИМПЛОЗИОННОЙ ОБРАБОТКИ НЕФТЯНЫХ СКВАЖИН / RU 02721544 C1 20200520/
Открыть
Описание
Изобретение относится к устройствам для обработки продуктивного пласта и может быть использовано для повышения производительности нефтяных скважин. Устройство для термоимплозионной обработки нефтяных скважин включает воздушную камеру с атмосферным давлением и заглушку, состоящую из коаксиально расположенных переходника и корпуса сгораемого элемента. Переходник снабжен внутренним опорным элементом, разделяющим его на две части, в одной из частей на опорном элементе жестко закреплен корпус сгораемого элемента, снаряженный монолитным газогенерирующим при сгорании композиционным материалом, состоящим из смеси аммиачной селитры гранулированной марки Б, катализатора, горючего связующего включающего, мас.%: эпоксидную смолу марки ЭД-20-76; пластификатор марки ЭДОС - 8; агидол марки АФ-2М - 16, и воспламенитель, срабатывающий от электрической спирали. Внутренний опорный элемент переходника выполнен в виде кольца, жестко закрепленного на его поверхности, при этом часть, обращенная к воздушной камере, открыта, а газогенерирующий композиционный материал в качестве катализатора содержит феррат калия, при следующем соотношении компонентов, мас.%: аммиачная селитра гранулированная марки Б - 71,0-73,0; феррат калия - 1,0-3,0; горючее связующее - 24,0-28,0. Техническим результатом является повышение надежности и эффективности работы устройства за счет обеспечения его герметичности и стабильности процесса горения композиционного материала при упрощении его конструкции. 2 ил. Подробнее
Дата
2019-12-31
Патентообладатели
Садыков Марат Ильгизович
Авторы
Садыков Марат Ильгизович
СПОСОБ ОПРЕДЕЛЕНИЯ ИНДИВИДУАЛЬНОЙ АКТИВНОСТИ 131-ЙОДА ДЛЯ ПРОВЕДЕНИЯ РАДИОЙОДТЕРАПИИ ТИРЕОТОКСИКОЗА И ПРОГНОЗИРОВАНИЯ ВРЕМЕНИ ДОСТИЖЕНИЯ БЕЗОПАСНОГО УРОВНЯ АКТИВНОСТИ 131-ЙОДА В ОРГАНИЗМЕ ПАЦИЕНТА ПОСЛЕ ВВЕДЕНИЯ ИНДИВИДУАЛЬНОЙ АКТИВНОСТИ 131-ЙОДА / RU 02722568 C1 20200601/
Открыть
Описание
Группа изобретений относится к медицине, а именно к эндокринологии, радиологии, терапии, и может быть использована для определения индивидуальной активности 131-йода для проведения радиойодтерапии тиреотоксикоза, а также прогнозирования времени достижения безопасного уровня активности 131-йода в организме пациента после введения индивидуальной активности 131-йода. Способ определения индивидуальной активности 131-йода для проведения радиойодтерапии тиреотоксикоза включает определение объема участков (k) тироидной ткани (Vk, [мл]), удельного индекса тироидного захвата 99mTc-пертехнетата (I, [%]), распределения тироидного захвата 99mTc-пертехнетата по участкам ткани щитовидной железы (Rk, [%]), а также определение максимального и интегрального тироидного захвата 131-йода. Пациенту перорально вводят рабочий раствор объемом от 5 до 10 мл с содержанием активности (А0) 131-йода от 5 до 10 МБк. Далее на теле пациента размещают два дозиметра, выполненные с возможностью периодической регистрации мощности гамма-излучения до 2 мЗв/ч и автономной работы до 5 дней: первый - на уровне щитовидной железы, второй - на уровне мочевого пузыря. Регистрируют мощность гамма-излучения в непрерывном режиме в течение 2-5 суток, где j - номер дозиметра, p - номер зарегистрированного значения через определенный интервал времени из диапазона 2-15 минут, с сохранением зарегистрированных данных в памяти дозиметра. После чего данные значения переводят в значения активности 131-йода с получением массивов данных с последующим усреднением данных за каждый час измерений с получением массивов где i - номер часа после введения рабочего раствора. Далее определяют лечебную активность тироидной ткани : при удельном индексе тироидного захвата 99mTc-пертехнентата менее 0,5%/мл по формуле при удельном индексе тироидного захвата 99mTc-пертехнентата более 0,5%/мл - по формуле где - фактор накопления дозы, и в случае, если k=1, в качестве индивидуальной терапевтической активности 131-йода принимают минимальное значение из а в случае, если k>1, индивидуальную терапевтическую активность 131-йода определяют по формуле где MU - максимальный тироидный захват 131-йода, а UI - интегральный захват 131-йода, которые определяют по формулам: или по формулам: где - массив активности в камере «Щитовидная железа», ! полученный при обработке зарегистрированных данных массивов с применением четырехкамерной модели фармакокинетики 131-йода в организме пациента, учитывающей активности в каждый момент времени t в следующих камерах: «Тело», «Щитовидная железа», «Активность 131-йода, выведенная из тела через мочевой пузырь», «Убыль активности 131-йода в результате радиоактивного распада». Прогнозируют время достижения безопасного уровня активности 131-йода (Т) в организме пациента после введения индивидуальной активности 131-йода по формуле: ! где Ан - нормативная безопасность активности для населения, ! λэф. - постоянная эффективного выведения, определяемая аппроксимацией массива активностей в организме пациента моноэкспоненциальной функцией где является суммой активностей и активности в камере «Тело» Способ обеспечивает снижение риска возникновения рецидива тиреотоксикоза и повышает точность прогноза времени достижения безопасного уровня активности в организме пациента за счет определения индивидуальной активности 131-йода для проведения радиойодтерапии с учетом индивидуальной фармакокинетики. 2 н. и 4 з.п. ф-лы, 7 ил., 6 пр. Подробнее
Дата
2019-12-31
Патентообладатели
"ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ""НАЦИОНАЛЬНЫЙ МЕДИЦИНСКИЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ЭНДОКРИНОЛОГИИ"" МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ "
Авторы
Румянцев Павел Олегович , Трухин Алексей Андреевич , Дедов Иван Иванович , Мельниченко Галина Афанасьевна , Мокрышева Наталья Георгиевна
СПОСОБ ПОЛУЧЕНИЯ КУСКОВОГО СИЛИКАГЕЛЯ / RU 02723623 C1 20200616/
Открыть
Описание
Изобретение относится к способам получения технического кускового силикагеля. Способ получения кускового силикагеля включает смешивание раствора жидкого стекла с раствором серной кислоты при 15-25°C, гелирование раствора при температуре 15-30°C в течение 20-40 часов, измельчение, отмывку и термическую обработку. Согласно способу рН раствора, полученного при смешении растворов жидкого стекла и серной кислоты, находится в диапазоне 0-4. Силикагель обрабатывают водным раствором аммиака. Изобретение обеспечивает получение кускового силикагеля, характеризующегося удельной поверхностью 200-400 м2/г, влагопоглощением более 1 см3/г и гидролитической стабильностью. 1 табл., 3 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ ""ИНЖИНИРИНГОВЫЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ЦЕНТР"" , Утаганова Альфия Радифовна "
Авторы
Князев Алексей Сергеевич , Мазов Илья Николаевич , Мамонтов Григорий Владимирович , Вышегородцева Елена Васильевна , Савельева Анна Сергеевна , Утаганова Альфия Радифовна
Способ повышения эффективности человека на основе оценки и развития эмоционального интеллекта / RU 02720400 C1 20200429/
Открыть
Описание
Изобретение относится к области вычислительной техники, а также к области психологии и может быть использовано для повышения эффективности человека на основе оценки и развития эмоционального интеллекта. Способ заключается в оценке эмоционального интеллекта и последующем обучении человека. При этом при оценке осуществляют: установку на человеке одного или нескольких измерительных сенсорных датчиков, выполнение человеком интеллектуальных задач с использованием информации, которую дают эмоции, с изображением проявлений определенных эмоций, аудио- и видеофиксации оцениваемого человека и его изменений при выполнении интеллектуальных задач, при которой сопоставляют и сохраняют на носителе информации видео оцениваемого человека и интеллектуальных задач, выполняемых им, и обработку полученных данных с определением одного или нескольких параметров эмоционального интеллекта, неудовлетворяющих каким-либо критериям, которые необходимо улучшить. При обучении и развитии осуществляют: установку на обучаемом человеке измерительных сенсорных датчиков, выполнение обучаемым человеком обучающих или развивающих или интеллектуальных задач с использованием информации, которую дают эмоции, с изображением проявлений определенных эмоций, аудио- и видеофиксации оцениваемого человека и его изменений при выполнении обучающих или развивающих или интеллектуальных задач, при которой сопоставляют и сохраняют на носителе информации видео оцениваемого человека и интеллектуальных задач, выполняемых им, и обработку полученных данных с определением степени развития эмоционального интеллекта обучаемого человека и его эффективности работы в результате пройденного обучения, основанным на одном или нескольких параметрах по сравнению с параметрами, выявленными при оценке, и выдачу рекомендаций по дальнейшему развитию эмоционального интеллекта и повышению эффективности работы данного человека. При необходимости - повторение обучения. Изобретение обеспечивает повышение точности и скорости оценки способностей эмоционального интеллекта, ускорение развития эмоционального интеллекта и повышение эффективности человека. 7 з.п. ф-лы. Подробнее
Дата
2019-12-30
Патентообладатели
"Общество с ограниченной ответственностью ""ЛАБОРАТОРИЯ ЭМОЦИОНАЛЬНОГО ИНТЕЛЛЕКТА"" "
Авторы
Хлевная Елена Анатольевна , Киселева Татьяна Сергеевна
Способ безокислительной термической обработки изделий из аустенитной коррозионно-стойкой стали / RU 02723871 C1 20200617/
Открыть
Описание
Изобретение относится к области безокислительной термической обработки изделий из коррозионно-стойкой аустенитной стали, используемых в качестве конструкционных элементов атомных реакторов. В вакуумную камеру загружают садку из обезжиренных изделий и проводят вакуумирование камеры с садкой. Остаточное давление после вакуумирования камеры составляет не более 8×10-5 мм рт.ст., а натекание составляет менее 5,00×10-3 л × мм рт.ст./с в течение не менее 24 с. Нагревают садку до температуры аустенизации, составляющей 920-970°С, установленным в камере индуктором. Выдерживают садку при этой температуре и осуществляют последующее охлаждение. Обеспечивается получение изделий из аустенитных сталей без окисных пленок, в том числе цветов побежалости, на поверхности, а также требуемый уровень механических свойств и стойкость к межкристаллитной коррозии. 1 ил. Подробнее
Дата
2019-12-30
Патентообладатели
"Акционерное общество ""Чепецкий механический завод"" "
Авторы
Вдовенко Ирина Николаевна , Наговицын Павел Геннадьевич , Мильчаков Илья Владимирович
Устройство для формования объемных деталей одежды / RU 02720837 C1 20200513/
Открыть
Описание
Изобретение относится к легкой промышленности и может быть использовано в технологии швейного производства при операциях влажно-тепловой обработки деталей одежды из текстильных материалов. Устройство для формования объемных деталей одежды содержит перфорированную форму-колодку 2 с форсунками 3 для подачи полимерного материала, основание 1, на котором закреплена куполообразная резиновая мембрана 6, расположенная под перфорированной формой-колодкой 2, и воздушный компрессор 9, присоединенный посредством трубопровода 8 к нижней части основания 1. Согласно изобретению куполообразная резиновая мембрана 6 выполнена с равномерно увеличивающейся толщиной от верхней точки купола к основанию 1. Толщину мембраны 6 в каждой ее точке определяют по формуле h=(P/σt)R, где h - толщина куполообразной резиновой мембраны, мм; P - предельное давление для формообразования объемного участка детали одежды, Н/мм2; σt - тангенциальное окружное напряжение обрабатываемого материала, Н/мм2; R - радиус кривизны перфорированной формы-колодки, мм. Техническим результатом изобретения является повышение качества отформованных объемных деталей одежды. 2 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-12-30
Патентообладатели
Плеханов Алексей Федорович , Ташпулатов Салих Шукурович , Черунова Ирина Викторовна , Артикбаева Нозима Муминджановна
Авторы
Плеханов Алексей Федорович , Джураев Анвар Джураевич , Ташпулатов Салих Шукурович , Черунова Ирина Викторовна , Артикбаева Нозима Муминджановна , Шин Илларион Георгиевич
Способ изготовления осесимметричных деталей сложного профиля / RU 02722939 C1 20200605/
Открыть
Описание
Изобретение относится к области обработки металлов давлением, а именно к изготовлению осесимметричных деталей сложного профиля, работающих под внутренним давлением. Вначале трубы разрезают на мерные заготовки, затем заготовки калибруют по наружной и/или внутренней поверхности, выполняют предварительную механическую обработку. Далее осуществляют обжим заготовки посредством прессовой или давильной обработки за несколько переходов с промежуточным отжигом и фосфатированием в холодном состоянии или с нагревом. При этом перед последним переходом обжима выполняют вытяжку с утонением стенки по внутренней поверхности пуансоном с профилем рабочей поверхности в виде сочетания конических и переходного участков, затем выполняют отжиг, уменьшающий напряжения и окончательную механическую обработку. Причем обжим осуществляют деформирующим инструментом с использованием износостойкого покрытия, смазочно-охлаждающей жидкости и смазки. Повышается качество поверхностей деталей и точность геометрических размеров. 4 з.п. ф-лы. 7 ил. Подробнее
Дата
2019-12-30
Патентообладатели
"Акционерное общество ""Научно-производственное объединение ""СПЛАВ"" им. А.Н. Ганичева "
Авторы
Белов Алексей Евгеньевич , Собкалов Владимир Тимофеевич , Анненков Дмитрий Викторович , Зайцев Виктор Дмитриевич , Барычева Тамара Петровна , Захаренко Юрий Иванович , Подколзин Николай Никитович , Пентелев Алексей Юрьевич , Маслов Валерий Алексеевич , Сивцов Сергей Валентинович , Октябрьская Лариса Владимировна , Брусенцев Виктор Петрович
СПОСОБ ПОЛУНЕПРЕРЫВНОГО ЛИТЬЯ ПЛОСКИХ КРУПНОГАБАРИТНЫХ СЛИТКОВ ИЗ АЛЮМИНИЕВО-МАГНИЕВЫХ СПЛАВОВ, ЛЕГИРОВАННЫХ СКАНДИЕМ И ЦИРКОНИЕМ / RU 02723578 C1 20200616/
Открыть
Описание
Изобретение относится к области металлургии и может быть использовано при полунепрерывном литье плоских крупногабаритных слитков из алюминиево-магниевых сплавов, легированных скандием и цирконием. В основном периоде литья максимальную глубину лунки жидкого сплава в кристаллизаторе поддерживают не более величины, рассчитываемой по формуле: LЛ=(1±0,03)×[0,875×(Н-В)×В:Н], где LЛ – максимальная глубина лунки жидкого сплава, мм; Н – ширина слитка, мм; В – толщина слитка, мм; 0,875 – эмпирический коэффициент; (1±0,03) – доверительный интервал. Содержание скандия в сплаве поддерживают не более 0,15% вес. Обеспечивается улучшение механических характеристик алюминиево-магниевых сплавов после отжига за счет образования повышенного количества дисперсных алюминидов скандия и циркония в результате распада пересыщенных твердых растворов при снижении расхода скандия, повышение производительности и выхода годной продукции при последующей механической обработке отожженных слитков. 1 ил., 5 табл., 2 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"Общество с ограниченной ответственностью ""Объединенная Компания РУСАЛ Инженерно-технологический центр"" "
Авторы
Куликов Борис Петрович , Баранов Владимир Николаевич , Зенкин Евгений Юрьевич , Юрьев Павел Олегович , Безруких Александр Иннокентьевич , Степаненко Никита Андреевич
Децентрализованная система интервального регулирования движения поездов с автоматизированным управлением / RU 02724476 C1 20200623/
Открыть
Описание
Изобретение относится к средствам интервального регулирования движения поездов с автоматизированным управлением. Система содержит установленные на каждом локомотиве 1 (2) блок 3 обработки данных, навигационный приемник 4, приемопередатчик 5, блок 6 энергонезависимой памяти и блок 7 управления локомотивом, в хвостовом вагоне 8 (9) каждого поезда установлен приемопередатчик 10 с модулем 11 обработки данных, в тормозной магистрали хвостового вагона 8 (9) каждого поезда установлен датчик 12 давления. При этом локомотивный блок 3 обработки данных включает модуль 13 выбора объектов пути по номеру пути и направлению движения, модуль 14 определения местоположения головы поезда, модуль 15 вычисления местоположения хвоста поезда, модуль 16 формирования сообщений по радиоканалу, модуль 17 выбора списка актуальных объектов пути впереди поезда, модуль 18 выбора приоритетных актуальных объектов, вычислитель 19 профиля скорости движения, модуль 20 вычисления времени движения между станциями, модуль 21 сравнения динамического и статического профилей скоростей, модуль 22 построения динамического профиля скоростей и модуль 23 обработки данных от впередиидущего поезда. Достигается повышение точности поддержания допустимого межпоездного интервала при автоматическом управлении локомотивными бортовыми устройствами. 2 ил. Подробнее
Дата
2019-12-30
Патентообладатели
"Акционерное общество ""Научно-исследовательский и проектно-конструкторский институт информатизации, автоматизации и связи на железнодорожном транспорте"" "
Авторы
Розенберг Ефим Наумович , Шухина Елена Евгеньевна , Панферов Игорь Александрович , Киселева Светлана Владимировна , Масалов Геннадий Дмитриевич
Способ винтовой прокатки сплавов системы титан-цирконий-ниобий / RU 02717765 C1 20200325/
Открыть
Описание
Изобретение относится к термомеханической обработке титановых сплавов, а именно к созданию способа винтовой прокатки сплавов системы титан-цирконий-ниобий, и может быть использовано в качестве полупродукта для изготовления костных имплантатов. Способ винтовой прокатки сплавов системы титан-цирконий-ниобий заключается в том, что осуществляют многопроходную винтовую прокатку заготовки с промежуточными подогревами при углах подъема винтовых траекторий движения металла в очаге деформации 12-24°, при этом сочетают проходы с траекториями движения по правым винтовым линиям и проходы с траекториями движения по левым винтовым линиям, причем суммарная доля истинной деформации в проходах с траекториями движения металла по одному из видов винтовой линии не превышает 65% от общей истинной деформации. Увеличивается прочность и пластичность, а также повышаются служебные свойства сплавов системы титан-цирконий-ниобий, работающих в условиях долговременных скручивающих нагрузок переменного направления. 1 ил., 2 табл., 2 пр. Подробнее
Дата
2019-12-27
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский технологический университет ""МИСиС"" "
Авторы
Шереметьев Вадим Алексеевич , Прокошкин Сергей Дмитриевич , Браиловский Владимир Иосифович , Кудряшова Анастасия Александровна , Галкин Сергей Павлович
СПОСОБ И СИСТЕМА ДЛЯ СОЗДАНИЯ МИМИКИ НА ОСНОВЕ ТЕКСТА / RU 02723454 C1 20200611/
Открыть
Описание
Изобретение относится к области обработки данных изображения. Технический результат заключается в обеспечении возможности создания видеопотока с анимированным изображением 3D-модели головы с размещенной на ней динамической текстурой лицевой маски на основе данных речевого сигнала. Получают данные по меньшей мере одного речевого сигнала. Разделяют участки речевого сигнала, содержащие информацию о голосе, на временные окна. Формируют для каждого временного окна изображение частотного спектра для получения последовательности изображений частотного спектра. На основе последовательности изображений частотного спектра определяют последовательность данных о множестве координат точек, образующих лицевую маску. Размещают лицевую маску на 3D-модели головы для формирования последовательности кадров, содержащих изображение 3D-модели головы с размещенной на ней лицевой маской. На основе последовательности изображений частотного спектра формируют последовательность кадров динамической текстуры лицевой маски. Формируют последовательность кадров, содержащих изображение результирующей 3D-модели головы с размещенной на ней динамической текстурой лицевой маски. 2 н. и 7 з.п. ф-лы, 4 ил. Подробнее
Дата
2019-12-27
Патентообладатели
"Публичное акционерное общество ""Сбербанк России"" "
Авторы
Ефимов Альберт Рувимович , Гонноченко Алексей Сергеевич , Владимиров Михаил Александрович
Устройство для перфорации и обработки скважины / RU 02720432 C1 20200429/
Открыть
Описание
Изобретение относится к нефтегазодобывающей промышленности. Устройство для создания перфорационных каналов в скважине включает корпус (2), образованный стенкой гидроцилиндра c отверстиями (18) для выхода резцов, клин, в котором выполнены пазы с установленными в них ползунами (5) с резцедержателями (12), которые имеют возможность перемещения в пазах и оснащены резцами (13) с гидромониторами (14), каналы для подачи рабочей жидкости в гидромониторы, поршень и опору ползунов. Гидромониторы (14) резцов выполнены под углом к их боковым поверхностям и направлены в разные стороны. Клин имеет возможность осевого перемещения в корпусе и выполнен в виде поршня-толкателя (4), выполненного с полостью (15), которая объединяет каналы (17) для подачи рабочей жидкости. В полости клина по его оси смонтирован дополнительный поршень-клапан (3), который зафиксирован при помощи штифта (11). В корпусе с одной стороны установлена муфта (1) для присоединения корпуса к насосно-компрессорной трубе, а с другой стороны корпуса установлена опора ползунов, выполненная в виде кольцевого упора (6) и установленная за отверстиями (18) для выхода резцов. Обеспечивается упрощение конструкции устройства при одновременном обеспечении возможности осуществления нескольких технологических операций по обработке скважин за одну спускоподъемную операцию, сокращение времени на обработку скважины. 2 з.п. ф-лы, 4 ил. Подробнее
Дата
2019-12-27
Патентообладатели
ХАКИМОВ Максим Ильдусович
Авторы
ХАКИМОВ Максим Ильдусович
Сплав на основе титана и способ его обработки для создания внутрикостных имплантатов с повышенной биомеханической совместимостью с костной тканью / RU 02716928 C1 20200317/
Открыть
Описание
Изобретение относится к металлургии, а именно к биосовместимым сплавам с механическим поведением, близким к поведению костной ткани человека, и может быть использован для несущих конструкций медицинских внутрикостных имплантатов. Сверхупругий сплав на основе титана содержит, ат.%: цирконий 18-42, ниобий 8-15, титан остальное, при этом сплав имеет наносубзеренную структуру и высокотемпературную метастабильную β-фазу, находящуюся в предмартенситном состоянии. Способ термомеханической обработки сверхупругого сплава на основе титана включает гомогенизационный отжиг при 800-1000°С в течение 60-120 минут, холодную пластическую деформацию со степенью истинной деформации е=0,25-0,55, последеформационный отжиг при 500-600°С в течение 30-60 минут и охлаждение в воде. Сплав характеризуется высокой биосовместимостью с механическим поведением, близким к поведению костной ткани, а также высокой долговечностью. 2 н.п. ф-лы, 1 ил., 2 пр. Подробнее
Дата
2019-12-27
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский технологический университет ""МИСиС"" "
Авторы
Конопацкий Антон Сергеевич , Дубинский Сергей Михайлович , Шереметьев Вадим Алексеевич , Прокошкин Сергей Дмитриевич , Браиловский Владимир Иосифович
Система автоматического создания сценарного видеоролика с присутствием в кадре заданного объекта или группы объектов / RU 02719328 C1 20200417/
Открыть
Описание
Изобретение относится к системам создания сценарного видеоролика. Технический результат заключается в обеспечении возможности автоматического создания сценарного видеоролика с присутствием в кадре заданного объекта. Система содержит блок съемки, включающий устройство записи первичных видеоданных, модуль хранения информации, включающий блок для хранения первичных видеоданных, блок идентификации заданного объекта или группы объектов в первичных видеоданных, блок ввода информации о заданном объекте или группе объектов для их идентификации, блок извлечения релевантных видеоданных с присутствием в кадре заданного объекта или группы объектов, блок обработки релевантных видеоданных, сценарный шаблон, включающий набор данных для работы блока съемки, блока извлечения релевантных видеоданных и блока обработки релевантных видеоданных, причем каждое устройство записи первичных видеоданных из блока съемки работает по данным сценарного шаблона, причем блок извлечения релевантных видеоданных включает программное обеспечение, которое позволяет по меткам, установленным блоком идентификации, и данным сценарного шаблона вырезать видеофрагменты с присутствием в кадре заданного объекта из первичных видеоданных, причем блок обработки релевантных видеоданных включает программное обеспечение, которое позволяет формировать сценарные видеоролики, используя релевантные данные, сформированные блоком извлечения, и данные сценарного шаблона, модуль хранения информации дополнительно включает блок хранения релевантных видеоданных, блок хранения сценарных шаблонов, блок хранения сценарных видеороликов, стационарную зону съёмки с дополнительным блоком идентификации, подвижную зону съёмки с заданной траекторий движения, с дополнительным блоком идентификации. 9 з.п. ф-лы, 1 ил. Подробнее
Дата
2019-12-26
Патентообладатели
"Общество с ограниченной ответственностью ""ФАН ЭДИТОР"" "
Авторы
Роженков Антон Владимирович , Клюев Сергей Сергеевич , Калиниченко Денис Евгеньевич , Гуричев Дмитрий Вячеславович
СПОСОБ МОДИФИКАЦИИ МЕМБРАН ДЛЯ УЛЬТРАФИЛЬТРАЦИИ ВОДНЫХ СРЕД / RU 02719165 C1 20200417/
Открыть
Описание
Изобретение относится к мембранной технологии и может найти применение для очистки и разделения воды и водных растворов в пищевой, фармацевтической, нефтехимической и других отраслях промышленности, при водоподготовке и создании особо чистых растворов. Способ модификации мембран для ультрафильтрации водных сред заключается в том, что предварительно определяют порог отсечения исходной мембраны и с учетом характеристик отделяемых загрязнителей и материала, из которого выполнена исходная мембрана, задают требуемый порог отсечения, затем в зависимости от характеристик исходной мембраны осуществляют выбор модификатора из анизотропных дисперсных материалов, выбранных из группы: нанофибриллярная целлюлоза, нанотрубки галлуазита, нанокристаллическая целлюлоза с размером частиц, соответствующих достижению заданного порога отсечения, причем выбранный модификатор подвергают химической обработке до получения значения дзета-потенциала, соответствующего заданному порогу отсечения, при этом в случае использования в качестве модификатора нанофибриллярной целлюлозы водную дисперсию нанофибриллярной целлюлозы смешивают с серной кислотой до достижения ее концентрации 20-65 мас.% и пероксидом водорода до достижения его концентрации 0,1-10,0 мас.% с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанофибриллярной целлюлозы от минус 36 до минус 200 мВ, в случае использования в качестве модификатора нанотрубок галлуазита водную дисперсию галлуазита смешивают с водным раствором полимера с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанотрубок галлуазита от минус 36 до минус 200 мВ, в случае использования в качестве модификатора нанокристаллической целлюлозы водную дисперсию нанокристаллической целлюлозы смешивают с серной кислотой до достижения ее концентрации 20-80 мас.% и пероксида водорода до достижения его концентрации 0,1-10,0 мас.% с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанокристаллической целлюлозы от минус 36 до минус 200 мВ, после чего исходную мембрану помещают в водную среду и проводят гидрофилизацию исходной мембраны путем подачи на ее рабочую поверхность дисперсии выбранного и обработанного одним из соответствующих вышеуказанных способов модификатора с образованием гидрофильного слоя на рабочей поверхности мембраны в процессе фильтрации дисперсии модификатора сквозь стенку мембраны. Достигаемый технический результат заключается в обеспечении формирования в ходе модификации мембраны гидрофильного разделительного слоя на рабочей поверхности мембраны с регулируемыми удельным зарядом и ориентацией анизотропных дисперсных частиц модификатора, что обеспечивает высокие барьерные свойства образующегося при самосборке заряженных частиц модификатора гидрофильного разделительного слоя. 2 ил., 7 пр. Подробнее
Дата
2019-12-26
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Российский государственный университет нефти и газа имени И.М. Губкина"" "
Авторы
Винокуров Владимир Арнольдович , Гущин Павел Александрович , Иванов Евгений Владимирович , Новиков Андрей Александрович , Анохина Татьяна Сергеевна , Волков Алексей Владимирович , Борисов Илья Леонидович , Василевский Владимир Павлович , Петрова Дарья Андреевна
СПОСОБ ОПРЕДЕЛЕНИЯ ПО ИЗМЕРЕННЫМ ОТНОСИТЕЛЬНЫМ ДАЛЬНОСТЯМ КООРДИНАТ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ / RU 02722617 C1 20200602/
Открыть
Описание
Изобретение относится к радионавигации и может использоваться для определения пространственных координат (ПК) источника радиоизлучения (ИР), находящегося на стационарном или подвижном объекте. Достигаемый технический результат - обеспечение однозначного определения ПК ИР. Указанный результат достигается за счет того, что на объекте синхронизировано формируют и передают радиосигнал в виде четырех компонент, каждая из которых является гармоническим колебанием с заданной частотой. На каждой станции синхронизировано квадратурно принимают передаваемый с объекта радиосигнал. Потактно с заданными частотой дискретизации и количеством тактов в цикле формируют его цифровые квадратурные компоненты (ЦКК). По сформированным ЦКК формируют потактно заданным образом последующие четыре пары квадратурных компонент (КК), соответствующих компонентам передаваемого сигнала. Затем из них формируют четыре пары квадратурных компонент посредством суммирования каждой из полученных КК соответствующей пары. С использованием полученных квадратурных компонент формируют приведенные в способе параметры и по сформированным параметрам определяют временные задержки, которые передают в единый центр приема и обработки радиосигналов, где их корректируют, исключая известные в центре временные сдвиги, возникающие при приеме радиосигналов и их обработке на станциях. По скорректированным временным задержкам и при выполнении заданных в способе условий однозначно определяют относительные дальности до ИР от антенн станций. По относительным дальностям однозначно определяют пространственные координаты ИР. Способ позволяет исключить влияние отраженных, например, от земли сигналов и случайных фаз гетеродинов передатчика и приемников. Между ИР и совокупностью принимающих станций не требуется общая синхронизация. Подробнее
Дата
2019-12-26
Патентообладатели
"Акционерное общество ""Национальное РадиоТехническое Бюро"" "
Авторы
Панов Владимир Петрович , Приходько Виктор Владимирович
Способ автоматического повторного включения кабельно-воздушной линии электропередачи / RU 02719763 C1 20200423/
Открыть
Описание
Использование: в области электротехники. Технический результат - повышение помехозащищенности способа автоматического повторного включения кабельно-воздушной линии электропередачи (ЛЭП) и его упрощение. Согласно способу при повреждении кабельно-воздушной ЛЭП фиксируют электромагнитные волны, распространяющиеся от места повреждения к концам ЛЭП, с использованием блоков волнового определения повреждения ЛЭП, определяют факт повреждения ЛЭП по зафиксированным электромагнитным волнам, производят расчет расстояния до места повреждения ЛЭП, выдают с блока обработки информации сигнал о возможности повторного включения кабельно-воздушной ЛЭП, а также информацию о расчетном расстоянии до места повреждения кабельно-воздушной ЛЭП, производят предварительное имитационное моделирование ЛЭП и реализуют процедуру распознавания в блоке обработки информации, заключающееся в определении поврежденного кабельного или воздушного участка ЛЭП, а также расстояния до места повреждения, по результатам распознавания выдают с блока обработки информации запрещающий сигнал на повторное включение кабельно-воздушной ЛЭП, если повреждение произошло хотя бы на одном из кабельных участков ЛЭП. При этом фиксируют с помощью блоков волнового определения повреждения ЛЭП амплитуды первых импульсов тока и напряжения электромагнитных волн, приходящих к концам ЛЭП, формируют отношение амплитуд первых импульсов тока и напряжения электромагнитных волн, приходящих к концам ЛЭП, реализуют процедуру распознавания поврежденного участка и определяют место повреждения кабельно-воздушной ЛЭП по отношению амплитуды первых импульсов тока и напряжения электромагнитных волн, приходящих к концам ЛЭП, распознавание поврежденного участка и определение места повреждения кабельно-воздушной ЛЭП реализуют с использованием результатов имитационного моделирования, которые формируют в виде зависимости отношения амплитуд первых импульсов тока и напряжения электромагнитных волн, приходящих к концам ЛЭП, от длины ЛЭП, предварительно записывают результаты имитационного моделирования в блоки обработки информации. 5 ил. Подробнее
Дата
2019-12-25
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Нижегородский государственный технический университет им. Р.Е. Алексеева"" "
Авторы
Куликов Александр Леонидович , Лоскутов Антон Алексеевич , Пелевин Павел Сергеевич
Почвообрабатывающая машина для предпосевной обработки почвы / RU 02724761 C1 20200625/
Открыть
Описание
Изобретение относится к сельскохозяйственному машиностроению. Почвообрабатывающая машина для предпосевной обработки почвы содержит последовательно установленные в один след в направлении, обратном рабочему перемещению, почвообрабатывающие рабочие органы и свободно вращающиеся одинаковые полые катки. Количество катков составляет больше одного. Катки имеют прутки на цилиндрической образующей поверхности, размещенные с равным угловым шагом в поперечном сечении образующей поверхности цилиндра. Каждый предыдущий и последующий катки находятся в единой фазе углового вращения и состоят в кинематической взаимосвязи между собой с передаточным отношением, равным единице, а межосевые расстояния L между предыдущим и последующим катками устанавливают в зависимости от радиуса цилиндрической образующей поверхности катков, количества прутков на катке, количества последовательно установленных катков, количества целых шагов катка на семенном ложе в промежутке между осями катков. Обеспечивается выравнивание и уплотнение семенного ложа с одинаковым удалением на нем друг от друга следов прутков всех имеющихся в конструкции катков. 2 ил. Подробнее
Дата
2019-12-25
Патентообладатели
"Федеральное государственное бюджетное научное учреждение ""Курский федеральный аграрный научный центр"" "
Авторы
Гуреев Иван Иванович
СПОСОБ ДЕЗАКТИВАЦИИ ПОВЕРХНОСТНО ЗАГРЯЗНЕННЫХ ИЗДЕЛИЙ ИЗ МЕТАЛЛИЧЕСКИХ СПЛАВОВ ИЛИ ИХ ФРАГМЕНТОВ / RU 02724627 C1 20200625/
Открыть
Описание
Изобретение относится к способам химической дезактивации металла с поверхностным загрязнением радионуклидами. Способ дезактивации поверхностно загрязненных изделий из металлических сплавов или их фрагментов, заключается в нанесении на дезактивируемую поверхность порошкового реагента, содержащего калий, натрий и серу, последующем нагреве поверхности, ее охлаждении путем обработки поверхности жидким азотом в количестве не менее 260 г на 1 кг обрабатываемой поверхности и очистке поверхности от образовавшейся окалины. Изобретение позволяет предотвратить улетучивание цезия в процессе дезактивации, за счет обеспечения резкого охлаждения МРАО после стадии нагрева. 1 табл. Подробнее
Дата
2019-12-25
Патентообладатели
Тихомиров Вячеслав Евгеньевич
Авторы
Тихомиров Вячеслав Евгеньевич , Тихомиров Денис Вячеславович
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ПРОФИЛЯ БАНДАЖА КОЛЕСНЫХ ПАР БЕЗ ВЫКАТКИ / RU 02717756 C1 20200325/
Открыть
Описание
Изобретение относится к области машиностроения, в частности к технологии восстановления профиля поверхности катания колесных пар без выкатки, и может быть использовано при механической обработке рабочей поверхности колес рельсовых транспортных средств с использованием ультразвуковых колебаний. Устройство для обработки профиля бандажа колесных пар без выкатки содержит профильный обрабатывающий инструмент, закреплённый в корпусе, и акустическую систему, расположенную в корпусе, представляющую собой пьезоэлектрический преобразователь, соединенный с концентратором, на торце которого закреплен излучатель ультразвука в виде волновода. При этом с противоположной от концентратора стороны вся свободная поверхность волновода представляет собой профильный обрабатывающий инструмент в виде резца, выполненного с возможностью обеспечения тангенциального ультразвукового точения, включающего одно вращательное движение и одно прямолинейное движение. Длины излучателя и концентратора составляют по 1/4λ, а длина преобразователя составляет 1/2λ, где λ – длина волны ультразвуковых колебаний. В результате обеспечивается сокращение усилий резания и времени обработки колёсных пар без выкатки при сокращении затрат энергии и повышении чистоты поверхности профиля бандажа при снижении её шероховатости. 1 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-12-25
Патентообладатели
Королев Владимир Александрович , Жуков Сергей Николаевич
Авторы
Королев Владимир Александрович , Жуков Сергей Николаевич