Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
НАНОАМОРФНАЯ ФОРМА (RS)-3-(4-АМИНО-1-ОКСО-1,3-ДИГИДРО-2Н-ИЗОИНДОЛ-2-ИЛ)ПИПЕРИДИН-2,6-ДИОН (ВАРИАНТЫ), СПОСОБ ЕЁ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ ДЛЯ ЛЕЧЕНИЯ ИММУНОЛОГИЧЕСКИХ ИЛИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ / RU 02723624 C1 20200616/
Открыть
Описание
Изобретение относится к наноаморфной форме (RS)-3-(4-амино-1-оксо-1,3-дигидро-2Н-изоиндол-2-ил)пиперидин-2,6-диона, способу ее получения и применению в фармацевтических композициях, которые могут быть использованы для лечения иммунологических и/или онкологических заболеваний. Аморфная форма (RS)-3-(4-амино-1-оксо-1,3-дигидро-2Н-изоиндол-2-ил)пиперидин-2,6-диона характеризуется средним размером частиц 63,85±10 нм, температурой стеклования 122,9°C±7°C, кристаллизацией при температуре 172,6±5°C с удельным тепловым эффектом 85,77±9 Дж/г и плавлением при температуре 267,5±5°C с удельным тепловым эффектом 149,8±15 Дж/г в условиях дифференциальной сканирующей калориметрии при скорости нагрева 10°C/мин. Способ получения аморфной формы (RS)-3-(4-амино-1-оксо-1,3-дигидро-2Н-изоиндол-2-ил)пиперидин-2,6-диона включает следующие стадии: загрузку (RS)-3-(4-амино-1-оксо-1,3-дигидро-2Н-изоиндол-2-ил)пиперидин-2,6-диона в расплав, состоящий из 40  или 20 г D-фруктозы, 15 или 7,5 глактозы моногидрата и 40 или 20 г мочевины при температуре 55°C; перемешивание при температуре 55°С; внесение полученного расплава в воду, охлажденную до +7°C; перемешивание; фильтрование осадка; приготовление суспензии осадка в воде; перемешивание при температуре 20°С в течение около 1 часа; фильтрование; промывание осадка водой на фильтре; высушивание до постоянной массы под вакуумом при температуре +40°C. Используемый на стадии загрузки в расплав (RS)-3-(4-амино-1-оксо-1,3-дигидро-2Н-изоиндол-2-ил)пиперидин-2,6-дион получают восстановлением 3-(4-нитро-1-оксо-1,3-дигидро-2H-изоиндол-2-ил)пиперидин-2,6-диона серым чугуном в виде колотой дроби в 50%-ном водном этаноле в присутствии соляной кислоты. Аморфная форма (RS)-3-(4-амино-1-оксо-1,3-дигидро-2Н-изоиндол-2-ил)пиперидин-2,6-диона предназначена для лечения иммунологических или онкологических заболеваний. 5 н. и 1 з.п. ф-лы, 10 ил., 11 пр. Подробнее
Дата
2019-12-31
Патентообладатели
Общество с ограниченной ответственностью «АксельФарм»
Авторы
Торчинов Георгий Юрьевич
Способ получения сферического гидроксилапатита с регулируемым гранулометрическим составом / RU 02717064 C1 20200317/
Открыть
Описание
Изобретение может быть использовано в аддитивных технологиях для формирования импланта костной ткани. Способ получения сферических гранул гидроксилапатита с регулируемым гранулометрическим составом включает приготовление смеси, содержащей 11-15 мас.% нитрата кальция, 5-9 мас.% гидрофосфата аммония и воду – остальное. Путем добавления водного раствора гидроксида аммония доводят значение рН смеси до 10-12. Смесь выдерживают в автоклаве при давлении 150-200 атм и температуре 200-250°С в течение 1-1,5 ч. Промывают осадок до нейтрального рН. Осадок сушат в разреженной атмосфере при давлении не более 10-5 мм рт.ст. и температуре не более -55°С. Готовят суспензию, состоящую из 25-27 мас.% этилового спирта, 68-70 мас.% воды и сухого осадка – остальное. Суспензию обрабатывают ультразвуком в течение не менее 5 минут при мощности не менее 200 Вт. Проводят грануляцию с использованием распылительной сушки при температуре в рабочей камере 200-220°С и скорости подачи суспензии 13-15 мл/мин с последующим сбором сферических гранул с комплекса циклонных фильтров. Изобретение позволяет получить сферические гранулы гидроксилапатита с размером от 5 до 25 мкм. 6 ил., 2 табл., 3 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский технологический университет ""МИСиС"" "
Авторы
Чупрунов Константин Олегович , Юдин Андрей Григорьевич , Лейбо Денис Владимирович , Кузнецов Денис Валерьевич
СПОСОБ ПОЛУЧЕНИЯ БУМАГИ / RU 02723819 C1 20200617/
Открыть
Описание
Использование: целлюлозно-бумажная промышленность. Сущность: проводят подготовку макулатурного сырья, измельчение подготовленного сырья до степени помола 36-40 ШР с получением волокнистой массы, смешивают упрочняющий агент, представляющий собой водный раствор катионного полимера, с водной дисперсией нанофибриллярной целлюлозы, имеющей дзета-потенциал от минус 36 мВ до минус 200 мВ, взятой в количестве 2,0-4,5 кг/т в расчете на сухой вес целлюлозы и макулатурного сырья. Выдерживают указанную смесь при температуре 50-60°С в течение 5-10 мин с получением флокулированного упрочняющего агента. Смешивают проклеивающий агент с водной дисперсией нанофибриллярной целлюлозы, имеющей дзета-потенциал от минус 36 мВ до минус 200 мВ, взятой в количестве 1,5-3,5 кг/т в расчете на сухой вес целлюлозы и макулатурного сырья, с получением модифицированного проклеивающего агента. Затем смешивают волокнистую массу с флокулированным упрочняющим агентом и модифицированным проклеивающим агентом с получением бумажной массы. Последнюю подвергают обезвоживанию, прессованию, сушке и каландрованию с получением целевого продукта. Достигаемый технический результат заключается в образовании комплексных флокул в бумажной массе, обеспечивающих связывание растворенного крахмала и агрегацию мелкого волокна в составе бумажной массы, а также повышающих седиментационную устойчивость упрочняющего агента, что приводит к более равномерному распределению упрочняющего агента в волокнистой массе и, как следствие, повышению однородности и механических свойств получаемой бумаги. 1 табл. Подробнее
Дата
2019-12-30
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Российский государственный университет нефти и газа имени И.М. Губкина"" "
Авторы
Винокуров Владимир Арнольдович , Гущин Павел Александрович , Иванов Евгений Владимирович , Копицын Дмитрий Сергеевич , Новиков Андрей Александрович , Горбачевский Максим Викторович , Аникушин Борис Михайлович , Константинова Светлана Алексеевна , Зуйков Александр Александрович , Лагута Евгений Алексеевич , Сухоруков Олег Геннадьевич
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООКТАНОВОЙ ДОБАВКИ ПУТЕМ ГИДРИРОВАНИЯ ФУРФУРОЛА И ФУРФУРИЛОВОГО СПИРТА / RU 02723548 C1 20200616/
Открыть
Описание
Изобретение относится к способу получения 2-метилфурана путем селективного гидрирования фурановых производных - фурфурола и/или фурфурилового спирта. Способ заключается в гидрировании фурфурола и/или фурфурилового спирта в присутствии катализатора, содержащего 15 мас.% карбида молибдена, модифицированного металлическим никелем с мольным соотношением Ni/Mo от 0,1 до 0,5, остальное - углеродный носитель типа Сибунит, гидрирование проводят на установке периодического действия при температуре 150°С, давлении водорода 6,0 МПа, скорости перемешивания 1800 об/мин, времени реакции 4 ч с использованием раствора с объемным содержанием фурфурола или фурфурилового спирта в изопропаноле 3,5 об.% или на установке проточного типа в отсутствие растворителя при температуре 160-200°С, давлении водорода 5,0 МПа, скорости подачи сырья 3-6 мл/ч и объемной скорости водорода 300-600 мл/мин в присутствии указанного катализатора. Технический результат – разработан новый способ получения 2-метилфурана с высоким выходом при селективном гидрировании фурфурола и/или фурфурилового спирта. Полученный 2-метилфуран может быть использован для повышения октанового числа бензина. 1 з.п. ф-лы, 2 ил., 7 табл., 10 пр. Подробнее
Дата
2019-12-27
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Новосибирский национальный исследовательский государственный университет"" "
Авторы
Яковлев Вадим Анатольевич , Смирнов Андрей Анатольевич , Шилов Иван Николаевич
СПОСОБ ИЗВЛЕЧЕНИЯ НИОБИЯ ИЗ КЕКОВ ОТ ВЫЩЕЛАЧИВАНИЯ КОМПЛЕКСНОГО РЕДКОМЕТАЛЛЬНОГО СЫРЬЯ СЛОЖНОГО СОСТАВА / RU 02717421 C1 20200323/
Открыть
Описание
Изобретение относится к технологии гидрометаллургической переработки комплексного редкометалльного сырья сложного состава. Ниобий извлекают из ниобийсодержащих кеков от выщелачивания комплексного редкометалльного сырья. Смешивают кек со смесью водных растворов плавиковой и серной кислот в концентрациях 80-90 г/л и 800-980 г/л соответственно и 50%-ным по объему раствором трибутилфосфата в октане при массовом соотношении твердой фазы и жидкой фазы, равном 1:(3-9), и объемном соотношении жидкой водной фазы и жидкой органической фазы, равном (2-3):(1-2), с получением пульпы. Интенсивно перемешивают пульпу при температуре 20-25°С и времени контакта фаз 5-10 мин. Декантируют пульпу в течение 15-25 мин, затем отделяют жидкую органическую фазу от жидкой водной фазы и твердой фазы фильтрацией. Способ обеспечивает высокую степень извлечения ниобия из комплексного редкометалльного сырья в органическую фазу и его концентрирование при невысоких температурных, временных и расходных параметрах процесса. 3 пр. Подробнее
Дата
2019-12-20
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""МИРЭА - Российский технологический университет"" "
Авторы
Пермякова Наталия Анатольевна , Цыганкова Мария Викторовна , Лысакова Елена Иосифовна
Способ интраоперационной идентификации гиперплазии и опухолей паращитовидных желез у пациентов с первичным, вторичным и третичным гиперпаратиреозом для адекватной паратиреоидэктомии / RU 02724380 C1 20200623/
Открыть
Описание
Заявленное изобретение относится к медицине, а именно к хирургии, и может быть использовано для интраоперационной идентификации измененных паращитовидных желез (ПЩЖ). Для этого пациенту однократно вводят 5-аминолевулиновую кислоту в дозе 10 мг/кг массы тела не ранее 120 мин и не позднее 720 мин до начала операции, которую проводят при облучении операционного поля поляризованным синим светом длиной волны 395-405 нм для регистрации флуоресценции. При выявлении флюоресцирующих образований в области облучаемых тканей осуществляют удаление новообразований с проведением их последующего срочного гистологического исследования. В случае определения гиперплазии железистого эпителия проводят реплантацию неизмененной части паращитовидных желез в плечелучевую мышцу предплечья. Способ позволяет увеличить эффективность хирургического вмешательства за счет 100% вероятности визуализации ткани ПЩЖ при снижении осложнений за счет однократного введения препарата в малом объеме и расширении возможности хирургического вмешательства вследствие высокого временного интервала. 2 пр., 3 ил. Подробнее
Дата
2019-12-19
Патентообладатели
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский федеральный университет"
Авторы
Зинченко Сергей Викторович , Галиев Ильфат Зульфатович , Минабутдинов Рафаэль Минсалимович , Алиев Илгар Гардашхан Оглы , Билялов Айрат Ильдарович , Вахитова Рената Шамилевна
Способ переработки отходов антимонида индия и аппарат для его осуществления / RU 02723173 C2 20200609/
Открыть
Описание
Изобретение относится к цветной металлургии и может быть использовано для переработки вторичного индиевого сырья - арсенида индия. Путем смешивания отходов с хлористым цинком и хлористым аммонием в соотношении InSb:ZnCl2:NH4Cl=1:(0,8-0,9):(0,2-0,3) готовят шихту. Шихту загружают в расплав циркулирующего свинца с температурой 350-450°С, покрытого слоем в 0,5-1 см солевого расплава хлористого цинка. Температуру повышают до 400-500°С и смешивают шихту с расплавом свинца путем вращения фильтра в виде верхней и нижней конусообразных тарелей, соединенных большими основаниями с образованием фильтрующей щели с зазором 3-5 мм между тарелями с окнами. Периодически через 15 мин проверяют между тарелями наличие осадка - твердых кристаллов соединения сурьмы Zn3Sb2. При отсутствии осадка, свидетельствующего об окончании процесса, температуру снижают до 330-350°С и снимают образующийся солевой плав, содержащий комплексное соединение InCl×2ZnCl2 с поверхности расплава свинца. Фильтрующую щель тарелей сжимают до зазора 0,1 мм и проводят очистку свинца от образовавшегося между тарелями осадка путем захвата кристаллов осадка в окна тарелей и наполнением их в полость фильтра. Предлагаемый способ позволяют проводить разложение отходов антимонидов индия с извлечением 88-95% индия в металл с учетом извлечения из солевого плава и последующим отделением сурьмы. 1 ил., 1 табл., 1 пр. Подробнее
Дата
2019-12-19
Патентообладатели
Дьяков Виталий Евгеньевич
Авторы
Дьяков Виталий Евгеньевич
Хромсодержащий катализатор жидкофазного синтеза метанола и способ его получения / RU 02721547 C1 20200520/
Открыть
Описание
Изобретение относится к химической промышленности, а именно к производству гетерогенных катализаторов процесса жидкофазного синтеза метанола, и может быть применено на предприятиях химической промышленности для получения метанола, который используется в качестве растворителя, экстрагента и сырья для синтеза формальдегида, сложных эфиров органических и неорганических кислот и добавок к топливу. Хромсодержащий катализатор жидкофазного синтеза метанола содержит сверхсшитый полистирол в качестве носителя и активный металл. Согласно изобретению в качестве активного металла используется хром, при этом содержание хрома в катализаторе составляет от 4 до 6 мас.%, а содержание сверхсшитого полистирола - 94÷96 мас.%. Используют сверхсшитый полистирол с площадью внутренней поверхности 950÷1050 м2/г. Способ получения хромсодержащего катализатора жидкофазного синтеза метанола включает обработку сверхсшитого полистирола раствором соли активного металла в тетрагидрофуране, дистиллированной воде и метаноле, приготовленном под током азота, высушивание, продувку азотом с расходом 30±5 мл/мин в течение 30±5 мин, продувку водородом с расходом 30±5 мл/мин в течение 30±5 мин, восстановление водородом, охлаждение до комнатной температуры и продувку азотом с расходом 30±5 мл/мин в течение 30±5 мин. Согласно изобретению в качестве раствора соли активного металла используют раствор ацетата хрома концентрацией 3,6÷3,7 мас.%, обработку носителя раствором ацетата хрома осуществляют сначала смешиванием в течение 10±0,5 мин, далее - с использованием ультразвука с частотой 60±0,5 кГц, мощностью 75±1 Вт в течение 2±0,1 мин, высушивание проводится при 105±5°C в течение 1±0,1 ч, а восстановление водородом проводится при 350±10°С с расходом 10±1 мл/мин в течение 3±0,1 ч. Технический результат изобретения – повышение активности, селективности и операционной стабильности гетерогенного катализатора в реакции жидкофазного синтеза метанола. 2 н. и 1 з.п. ф-лы, 26 пр. Подробнее
Дата
2019-12-18
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Тверской государственный университет"" "
Авторы
Тихонов Борис Борисович , Матвеева Валентина Геннадьевна , Косивцов Юрий Юрьевич , Манаенков Олег Викторович , Григорьев Максим Евгеньевич , Долуда Валентин Юрьевич
Способ получения наноструктурного композиционного материала на основе алюминия / RU 02716930 C1 20200317/
Открыть
Описание
Изобретение относится к порошковой металлургии, в частности, к получению наноструктурного композиционного материала на основе алюминия, модифицированного фуллереном С60. Может использоваться в машиностроении и авиакосмической отрасли. Смесь стружки сплава алюминия, содержащего 6 вес.% магния, и порошка фуллерена С60 в количестве 0,1÷0,5 вес. % подвергают обработке в планетарной шаровой мельнице в течение 45 мин при скорости вращения 1800 об/мин. Полученную порошковую смесь прессуют при 550 мм в заготовку диаметром 50 мм и подвергают прямой горячей экструзии со степенью деформации 6,2 при давлении 1-1,5 ГПа и температуре 280°С. Обеспечивается увеличение механических свойств при сохранении плотности на уровне исходного матричного сплава. 3 ил., 3 табл., 2 пр. Подробнее
Дата
2019-12-17
Патентообладатели
"Федеральное государственное бюджетное научное учреждение ""Технологический институт сверхтвердых и новых углеродных материалов"" "
Авторы
Баграмов Рустэм Хамитович , Евдокимов Иван Андреевич , Грязнова Марина Игоревна , Ломакин Роман Леонидович , Перфилов Сергей Алексеевич , Поздняков Андрей Анатольевич
Способ получения наноструктурного композиционного материала на основе алюминия / RU 02716965 C1 20200317/
Открыть
Описание
Изобретение относится к порошковой металлургии, в частности, к получению наноструктурного композиционного материала на основе алюминия. Может использоваться в условиях переменных и ударных нагрузок, таких как высоконагруженные элементы конструкций, испытывающих значительную вибрацию и/или ударные воздействия. Смесь из порошка алюминия размером 20÷200 мкм, порошка магния размером 20÷200 мкм в количестве 3-9 вес.% и порошка фуллерена С60 размером менее 200 мкм в количестве 0,3 вес.% загружают в планетарную мельницу в атмосфере аргона, обрабатывают при скорости вращения ≈800 об/мин в течение 20 минут. Заготовку прессуют в атмосфере аргона при давлении 0,2 ГПа и обрабатывают в атмосфере аргона при 150°С в течение 60 минут. Горячее прессование проводят при давлении 1,2 ГПа и температуре 350°С в течение 5 минут, затем обрабатывают при 180°С в течение 72 часов в атмосфере аргона и охлаждают до комнатной температуры в течение 3 часов. Обеспечивается повышение пластичности, твердости и пределов прочности на растяжение и изгиб. 3 пр. Подробнее
Дата
2019-12-17
Патентообладатели
"Федеральное государственное бюджетное научное учреждение ""Технологический институт сверхтвердых и новых углеродных материалов"" "
Авторы
Баграмов Рустэм Хамитович , Евдокимов Иван Андреевич
Способ получения наноструктурного гидроксида никеля / RU 02719890 C1 20200423/
Открыть
Описание
Изобретение может быть использовано в производстве материалов для топливных ячеек, суперконденсаторов. Способ получения наноструктурного гидроксида никеля включает его осаждение в присутствии хитозана из реакционной смеси, содержащей раствор хлорида никеля (II) 6-водного и раствор мочевины. Содержание мочевины (NH2)2CO и хлорида никеля 6-водного NiCl2⋅6Н2О в реакционной смеси составляет, моль/л: NiCl2⋅6Н2О 0,07-0,5, (NH2)2CO 0,5-2,0. Хитозан вводят в реакционную смесь в количестве 0,1-0,2 масс. % в виде 2% раствора в 0,01 М соляной кислоте. Осаждение проводят в открытой емкости при 90-95°С в течение 8,0-9,0 ч. Полученный гелеобразный осадок после его остывания до комнатной температуры отфильтровывают под вакуумом, промывают, сушат на воздухе и подвергают термообработке при 100-105°С в течение 50-60 мин с получением α-фазы гидроксида никеля Ni(ОН)2. Изобретение позволяет обеспечить гомогенное осаждение гидроксида никеля Ni(OH)2 с формированием стабильной α-фазы при упрощении способа и его аппаратурного оформления, уменьшении затрат времени. 2 з.п. ф-лы, 1 ил., 1 табл., 4 пр. Подробнее
Дата
2019-12-16
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук
Авторы
Токарь Эдуард Анатольевич , Егорин Андрей Михайлович , Земскова Лариса Алексеевна
СПОСОБ ПОЛУЧЕНИЯ АКТИВИРОВАННОГО УГЛЯ / RU 02724753 C1 20200625/
Открыть
Описание
Изобретение относится к производству активированных углей. Способ получения активированного угля включает смешение до однородной массы тонкоизмельченных раздельно каменного угля и каменноугольного пека, формование угольно-пековой смеси, дробление и рассев на предварительно заданную фракцию. Проводят термическую обработку полученных гранул в присутствии кислорода воздуха при температуре 300-350°С с выдержкой при конечной температуре 3-3,5 часа, карбонизацию при 600-650°С со скоростью подъема температуры 3-6°С/мин, парогазовую активацию при температуре 920-950°С до степени обгара гранул 30-35%. Технический результат заключается в возможности использования различных марок каменного угля для получения активированного угля с высокими прочностными характеристиками (не менее 80%) и с развитым объемом сорбирующих микропор (не менее 0,25 г/дм3). 1 з.п. ф-лы, 1 табл., 2 пр. Подробнее
Дата
2019-12-16
Патентообладатели
"Общество с ограниченной ответственностью ""Активные Угли"", ООО ""Активные Угли"" "
Авторы
Королев Николай Владимирович
Способ получения нанокапсул сухого экстракта шишек хмеля в каппа-каррагинане / RU 02724578 C1 20200625/
Открыть
Описание
Изобретение относится к области медицины, фармацевтики и пищевой промышленности и может быть использовано для получения нанокапсул экстракта шишек хмеля. Способ получения нанокапсул сухого экстракта шишек хмеля заключается в том, что сухой экстракт шишек хмеля добавляют в суспензию каппа-каррагинана в метаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее приливают петролейный эфир, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре. Массовое соотношение ядро:оболочка в полученных нанокапсулах составляет 1:1, 1:2 или 1:3. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 3 пр. Подробнее
Дата
2019-12-16
Патентообладатели
Кролевец Александр Александрович
Авторы
Кролевец Александр Александрович
Способ производства пектинсодержащего продукта из плодов черешни / RU 02721393 C1 20200519/
Открыть
Описание
Изобретение относится к пищевой промышленности. Предложен способ производства пектинсодержащего продукта из плодов черешни, включающий обработку сырья плодов черешни ИК-лучами, причем без предварительного увлажнения обработка ИК-лучами плодов черешни с исходной влажностью мякоти 85-90% осуществляется при длине волны 0,9-1,1 мкм и плотности лучистого потока 12-14 кВт/м2 в течение 1,5-2,0 мин до достижения плодами температуры 90-100°С и при последующем остывании до конечной влажности 10-12%. Изобретение позволяет получить пектинсодержащий продукт, обладающий повышенным качеством и высокой биологической ценностью, при одновременном сокращении длительности технологического процесса, снижении затрат воды, тепла, энергии и исключении использования концентрированных кислот. 5 пр. Подробнее
Дата
2019-12-16
Патентообладатели
Гунькин Владимир Александрович
Авторы
Гунькин Владимир Александрович
Способ получения рыбного желатина / RU 02722210 C1 20200528/
Открыть
Описание
Изобретение относится к рыбной промышленности. Способ получения рыбного желатина предусматривает сортировку чешуи рыб, промывание 5 % раствором хлорида натрия при температуре 10-20 °С, гидромодуле 1:4, в течение 1 ч, затем промывают водопроводной водой при аналогичных условиях, дают воде стечь, чешую рыб охлаждают или замораживают при большом объеме сырья. После чего проводят мацерацию свежей или размороженной чешуи рыб растворами органических или неорганических кислот при рН 2-4 в течение 6-28 ч и золку щелочью при рН 10-14 в течение 24-96 ч при температуре 15-20 °С, нейтрализацию до рН 6-7, после чего чешую промывают в водопроводной воде при температуре 10-20 °С, затем проводят экстракцию в питьевой воде и перемешивании, сливают и фильтруют экстракт от примесей сопутствующих веществ, соединяют с пластификатором - глицерином в соотношении 100:1 при температуре 30-40 °С, сушат в инвентарных формах при температуре 20-50 °С в течение 6-24 ч при интенсивной циркуляции воздуха до содержания влаги не более 16 %. Затем рыбный желатин дезодорируют при температуре 100-110 °С в течение 20-30 мин, охлаждают до температуры окружающей среды, сортируют, упаковывают, маркируют и хранят при определенных условиях. Изобретение позволяет получить рыбный желатин с высокими качественными показателями, без использования химических консервантов. 1 табл., 2 пр. Подробнее
Дата
2019-12-16
Патентообладатели
"Общество с ограниченной ответственностью ""Биополимер-НЕО"" "
Авторы
Якубова Олеся Сергеевна , Бекешева Аделя Адлеровна
Пластовый мармелад из гуавы и способ его получения / RU 02724489 C1 20200623/
Открыть
Описание
Изобретение относится к пищевой промышленности, в частности к кондитерской отрасли и может быть использовано в производстве пластового диетического мармелада на основе фрукта гуава. Предложен способ получения пластового мармелада из гуавы, который включает пюрирование мякоти гуавы, смешивание ее с сахарным песком, кипячение смеси с последующим розливом ее в форму и сушку при комнатной температуре, при этом кипячение смеси пюре из мякоти гуавы с сахарным песком осуществляют при температуре 102 – 112°С в течение 20-35 мин и уваривают до достижения влажности 24-29% и содержания сухого вещества от 71 до 76%, после чего мармелад разливают в формы в виде пластов, разлитый в форму мармелад охлаждают и выстаивают при комнатной температуре в течение 3 – 5 ч, разрезают на порции и сушат в течение 6-12 ч при температуре 35 - 45°С с интенсивным обдувом. Также предложен пластовый мармелад из гуавы, который получен указанным способом и содержит пюре из мякоти гуавы и сахарный песок, при следующем соотношении исходных компонентов, мас.%: пюре из мякоти гуавы 50 – 80; сахарный песок 20 – 50, при этом рН готового пластового мармелада из гуавы составляет 3,5 – 3,7. Изобретением обеспечивается повышение органолептических характеристик мармелада с улучшенными структурными показателями, влияющими на внешний, товарный вид мармелада. 2 н.п. ф-лы, 4 пр. Подробнее
Дата
2019-12-12
Патентообладатели
Васьков Георгий Юрьевич
Авторы
Васьков Георгий Юрьевич
Способ комплексной медико-психологической реабилитации пациентов в поздний восстановительный период после острого нарушения мозгового кровообращения / RU 02724284 C1 20200622/
Открыть
Описание
Изобретение относится к медицине, неврологии, медицинской психологии и психотерапии, психофизиологии и может быть использовано в том числе для психологического и психофизиологического восстановления пациентов в позднем периоде после ишемического инсульта (в сроки более 6 мес после инсульта). Проводят комплекс соответствующего медикаментозного и физического воздействия в виде массажа и ЛФК, а также психологическую реабилитацию путем психофизиологического и психотерапевтического воздействия. Для этого предварительно используют методику оценки индивидуального эмоционального благополучия пациента по Одарущенко О.И. «Тест на эмоциональное благополучие 1.0», включающую проведение 9-ти субтестов, определяющих следующие 9 психологических параметров: 1) интернальность в области семейных отношений, 2) контактность, 3) субъективное благополучие, 4) креативность, 5) самопринятие, 6) гибкость поведения, 7) индекс нравственности, 8) зрелость личности, 9) самоуважение. Их значения используют при ранжировании и расчете обобщенного критерия (ОК) психического здоровья, отражающего уровень эмоционального благополучия, по оригинальной формуле. Если значение ОК равно или более 11,2 усл. ед., что отражает эмоциональное благополучие пациента, то в качестве психофизиологического воздействия осуществляют курс из ежедневных сеансов электроимпульсного воздействия с помощью устройства - многофункциональных очков Mind Spa, используя программу «Прогрессивной Релаксации Альфа Тренинга» Alpha 1 устройства Mind Spa в течение 10 дней. В первые три дня время воздействия в течение одного сеанса устанавливают 10 мин, в последующие - по 22 мин, а в качестве психотерапевтического воздействия используют рационально-эмотивно-поведенческую психотерапию (РЭПТ) длительностью сеанса 60 мин, который проводят после воздействия Mind Spa два раза в неделю. Если значение ОК менее 11,2 усл. ед. (отражает эмоциональное неблагополучие пациента), то в качестве психофизиологического воздействия осуществляют 12-дневный курс из ежедневных сеансов воздействия с помощью Mind Spa, используя вначале программу «Прогрессивного глубокого Тета Тренинга» Theta I, устанавливая ее длительность 10 мин. Затем психотерапевтическое воздействие в виде сеанса РЭПТ длительностью 60 мин 2 раза в неделю, затем снова воздействуют аппаратом Mind Spa в течение 10 мин, но уже программой «Прогрессивной Релаксации Альфа Тренинга» Alpha II, причем в дни, свободные от РЭПТ, и альфа-тренинг осуществляют непосредственно после проведения тета-тренинга. Не менее чем через 3 ч после этого проводят повторные воздействия последовательно - вначале 10 мин по программе Theta I, затем 10 мин по программе Alpha II. После 12-дневного курса определение ОК пациента повторяют, и при его значении выше или равном 11,2 усл. ед. считают воздействия эффективными и прекращают. При сохранении ОК менее 11,2 повторяют указанное психофизиологическое и психотерапевтическое воздействие для эмоционально неблагополучного пациента курсом 12 дней. Способ обеспечивает индивидуальный, дифференцированный подход к реабилитации пациентов в позднем восстановительном периоде после ишемического инсульта с учетом особенностей объективно установленного эмоционального статуса пациента. Это увеличивает реабилитационный эффект, улучшает качество жизни пациентов и их близких, ускоряет социализацию за счет восстановления эмоционального состояния пациентов с сохранением эффекта на длительный срок. 1 ил., 1 табл., 1 пр. Подробнее
Дата
2019-12-11
Патентообладатели
"Федеральное государственное бюджетное учреждение ""Национальный медицинский исследовательский центр реабилитации и курортологии"" Министерства здравоохранения Российской Федерации "
Авторы
Рачин Андрей Петрович , Одарущенко Ольга Ивановна
СПОСОБ ПОЛУЧЕНИЯ СТЕКОЛЬНОЙ ШИХТЫ / RU 02720042 C1 20200423/
Открыть
Описание
Изобретение относится к получению стекольной шихты и может быть использовано в стекольной промышленности. Задача, на решение которой направлено изобретение, заключается в снижении времени термической обработки, повышении прочности гранул стекольной шихты, качества шихты и ускорении технологического процесса термической обработки шихты. Это достигается тем, что после усреднения и гранулирования шихту подвергают термической обработке в камере с пластинчатым конвейером отходящими от плазменной стекловаренной печи плазмообразующими газами при температуре 500-600°С в течение 15-20 мин, а расстояние от среза воздушного сопла с отходящими газами до пластинчатого конвейера с гранулированной шихтой составляет 50-100 мм. 1 ил., 4 табл. Подробнее
Дата
2019-12-11
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Белгородский государственный технологический университет им. В.Г. Шухова"" "
Авторы
Бессмертный Василий Степанович , Бондаренко Надежда Ивановна , Бондаренко Диана Олеговна , Яловенко Татьяна Андреевна , Платова Раиса Абдулгафаровна , Бондаренко Марина Алексеевна , Чижова Елена Николаевна , Кочурин Дмитрий Владимирович
Короткозамкнутый ротор асинхронного электродвигателя / RU 02719602 C1 20200421/
Открыть
Описание
Изобретение относится к области электромашиностроения, а именно к конструкции асинхронных электродвигателей с короткозамкнутым ротором и может быть использовано в электроприводах различного назначения со скоростью вращения до 8000 об/мин. Технический результат - повышение надежности работы ротора на высоких скоростях вращения. Короткозамкнутый ротор асинхронного электродвигателя содержит ферромагнитный сердечник, в пазах которого размещены стержни 2 обмотки, имеющие в поперечном сечении форму, сужающуюся к оси ротора. Концы стержней запрессованы бандажными кольцами 4 в открытых радиальных пазах, выполненных в короткозамыкающих кольцах 3. Стержни и короткозамыкающие кольца поджаты с торцов упругими элементами, зафиксированными на валу ротора. 4 з.п. ф-лы, 5 ил. Подробнее
Дата
2019-12-10
Патентообладатели
"Публичное акционерное общество ""Силовые машины-ЗТЛ, ЛМЗ, Электросила, Энергомашэкспорт"" "
Авторы
Калачиков Павел Николаевич , Корнеев Константин Викторович , Талицкий Михаил Михайлович
Способ получения органоминерального удобрения на основе куриного помета и устройство для его реализации / RU 02722072 C1 20200526/
Открыть
Описание
Изобретение относится к сельскому хозяйству и может быть использовано для производства удобрения на основе куриного помета. Способ приготовления органоминерального удобрения включает введение в бесподстилочный свежий куриный помет влажностью от 50 до 55 % негашеной извести в пропорции 15–25 % от веса птичьего помета при помешивании в течение 45–60 мин при 15–30 об/мин. Осуществляют его аэрацию, отведение аммиачно-воздушной смеси и выдерживание смеси в течение 0,5–2,5 ч до достижения показателя рН 6,0–8,5. Способ реализуется с помощью устройства для приготовления органоминерального удобрения, включающего бункер-реактор с валами для перемешивания и подачи, соединенный через шнековый транспортер со стационарным бункером смешивания и/или с мобильным бункером. Бункер-реактор связан с устройством подачи воздуха и устройством отвода газовоздушной смеси, поступающей в емкость с водой, в верхней части которой находится узел отбора насыщенной газами воды, включающими аммиак. Емкость с водой соединена с устройством подачи в нее воды, а бункер-реактор соединен с гранулятором, связанным с узлом фасовки. Техническим результатом является сокращение процесса переработки птичьего помета с получением органического удобрения высокого качества и аммиачной воды, используемой в качестве азотного удобрения. 2 н. и 2 з.п. ф-лы, 1 ил. Подробнее
Дата
2019-12-06
Патентообладатели
Кузьмин Михаил Александрович
Авторы
Кузьмин Михаил Александрович