Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
Способ безокислительной термической обработки изделий из аустенитной коррозионно-стойкой стали / RU 02723871 C1 20200617/
Открыть
Описание
Изобретение относится к области безокислительной термической обработки изделий из коррозионно-стойкой аустенитной стали, используемых в качестве конструкционных элементов атомных реакторов. В вакуумную камеру загружают садку из обезжиренных изделий и проводят вакуумирование камеры с садкой. Остаточное давление после вакуумирования камеры составляет не более 8×10-5 мм рт.ст., а натекание составляет менее 5,00×10-3 л × мм рт.ст./с в течение не менее 24 с. Нагревают садку до температуры аустенизации, составляющей 920-970°С, установленным в камере индуктором. Выдерживают садку при этой температуре и осуществляют последующее охлаждение. Обеспечивается получение изделий из аустенитных сталей без окисных пленок, в том числе цветов побежалости, на поверхности, а также требуемый уровень механических свойств и стойкость к межкристаллитной коррозии. 1 ил. Подробнее
Дата
2019-12-30
Патентообладатели
"Акционерное общество ""Чепецкий механический завод"" "
Авторы
Вдовенко Ирина Николаевна , Наговицын Павел Геннадьевич , Мильчаков Илья Владимирович
Способ изготовления осесимметричных деталей сложного профиля / RU 02722939 C1 20200605/
Открыть
Описание
Изобретение относится к области обработки металлов давлением, а именно к изготовлению осесимметричных деталей сложного профиля, работающих под внутренним давлением. Вначале трубы разрезают на мерные заготовки, затем заготовки калибруют по наружной и/или внутренней поверхности, выполняют предварительную механическую обработку. Далее осуществляют обжим заготовки посредством прессовой или давильной обработки за несколько переходов с промежуточным отжигом и фосфатированием в холодном состоянии или с нагревом. При этом перед последним переходом обжима выполняют вытяжку с утонением стенки по внутренней поверхности пуансоном с профилем рабочей поверхности в виде сочетания конических и переходного участков, затем выполняют отжиг, уменьшающий напряжения и окончательную механическую обработку. Причем обжим осуществляют деформирующим инструментом с использованием износостойкого покрытия, смазочно-охлаждающей жидкости и смазки. Повышается качество поверхностей деталей и точность геометрических размеров. 4 з.п. ф-лы. 7 ил. Подробнее
Дата
2019-12-30
Патентообладатели
"Акционерное общество ""Научно-производственное объединение ""СПЛАВ"" им. А.Н. Ганичева "
Авторы
Белов Алексей Евгеньевич , Собкалов Владимир Тимофеевич , Анненков Дмитрий Викторович , Зайцев Виктор Дмитриевич , Барычева Тамара Петровна , Захаренко Юрий Иванович , Подколзин Николай Никитович , Пентелев Алексей Юрьевич , Маслов Валерий Алексеевич , Сивцов Сергей Валентинович , Октябрьская Лариса Владимировна , Брусенцев Виктор Петрович
СПОСОБ ПОЛУНЕПРЕРЫВНОГО ЛИТЬЯ ПЛОСКИХ КРУПНОГАБАРИТНЫХ СЛИТКОВ ИЗ АЛЮМИНИЕВО-МАГНИЕВЫХ СПЛАВОВ, ЛЕГИРОВАННЫХ СКАНДИЕМ И ЦИРКОНИЕМ / RU 02723578 C1 20200616/
Открыть
Описание
Изобретение относится к области металлургии и может быть использовано при полунепрерывном литье плоских крупногабаритных слитков из алюминиево-магниевых сплавов, легированных скандием и цирконием. В основном периоде литья максимальную глубину лунки жидкого сплава в кристаллизаторе поддерживают не более величины, рассчитываемой по формуле: LЛ=(1±0,03)×[0,875×(Н-В)×В:Н], где LЛ – максимальная глубина лунки жидкого сплава, мм; Н – ширина слитка, мм; В – толщина слитка, мм; 0,875 – эмпирический коэффициент; (1±0,03) – доверительный интервал. Содержание скандия в сплаве поддерживают не более 0,15% вес. Обеспечивается улучшение механических характеристик алюминиево-магниевых сплавов после отжига за счет образования повышенного количества дисперсных алюминидов скандия и циркония в результате распада пересыщенных твердых растворов при снижении расхода скандия, повышение производительности и выхода годной продукции при последующей механической обработке отожженных слитков. 1 ил., 5 табл., 2 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"Общество с ограниченной ответственностью ""Объединенная Компания РУСАЛ Инженерно-технологический центр"" "
Авторы
Куликов Борис Петрович , Баранов Владимир Николаевич , Зенкин Евгений Юрьевич , Юрьев Павел Олегович , Безруких Александр Иннокентьевич , Степаненко Никита Андреевич
Сплав на основе титана и способ его обработки для создания внутрикостных имплантатов с повышенной биомеханической совместимостью с костной тканью / RU 02716928 C1 20200317/
Открыть
Описание
Изобретение относится к металлургии, а именно к биосовместимым сплавам с механическим поведением, близким к поведению костной ткани человека, и может быть использован для несущих конструкций медицинских внутрикостных имплантатов. Сверхупругий сплав на основе титана содержит, ат.%: цирконий 18-42, ниобий 8-15, титан остальное, при этом сплав имеет наносубзеренную структуру и высокотемпературную метастабильную β-фазу, находящуюся в предмартенситном состоянии. Способ термомеханической обработки сверхупругого сплава на основе титана включает гомогенизационный отжиг при 800-1000°С в течение 60-120 минут, холодную пластическую деформацию со степенью истинной деформации е=0,25-0,55, последеформационный отжиг при 500-600°С в течение 30-60 минут и охлаждение в воде. Сплав характеризуется высокой биосовместимостью с механическим поведением, близким к поведению костной ткани, а также высокой долговечностью. 2 н.п. ф-лы, 1 ил., 2 пр. Подробнее
Дата
2019-12-27
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Национальный исследовательский технологический университет ""МИСиС"" "
Авторы
Конопацкий Антон Сергеевич , Дубинский Сергей Михайлович , Шереметьев Вадим Алексеевич , Прокошкин Сергей Дмитриевич , Браиловский Владимир Иосифович
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ПРОФИЛЯ БАНДАЖА КОЛЕСНЫХ ПАР БЕЗ ВЫКАТКИ / RU 02717756 C1 20200325/
Открыть
Описание
Изобретение относится к области машиностроения, в частности к технологии восстановления профиля поверхности катания колесных пар без выкатки, и может быть использовано при механической обработке рабочей поверхности колес рельсовых транспортных средств с использованием ультразвуковых колебаний. Устройство для обработки профиля бандажа колесных пар без выкатки содержит профильный обрабатывающий инструмент, закреплённый в корпусе, и акустическую систему, расположенную в корпусе, представляющую собой пьезоэлектрический преобразователь, соединенный с концентратором, на торце которого закреплен излучатель ультразвука в виде волновода. При этом с противоположной от концентратора стороны вся свободная поверхность волновода представляет собой профильный обрабатывающий инструмент в виде резца, выполненного с возможностью обеспечения тангенциального ультразвукового точения, включающего одно вращательное движение и одно прямолинейное движение. Длины излучателя и концентратора составляют по 1/4λ, а длина преобразователя составляет 1/2λ, где λ – длина волны ультразвуковых колебаний. В результате обеспечивается сокращение усилий резания и времени обработки колёсных пар без выкатки при сокращении затрат энергии и повышении чистоты поверхности профиля бандажа при снижении её шероховатости. 1 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-12-25
Патентообладатели
Королев Владимир Александрович , Жуков Сергей Николаевич
Авторы
Королев Владимир Александрович , Жуков Сергей Николаевич
Способ получения высококалорийных топливных пеллет из органического сырья с ежегодным возобновлением / RU 02723938 C1 20200618/
Открыть
Описание
Предложен способ получения высококалорийных топливных пеллет из органического сырья с ежегодным возобновлением, включающий тепловую обработку биомассы в реакторе с давлением, повышенным паром и воздухом, в котором давление по завершении обработки сбрасывают. В качестве биомассы используют зерно рапса и солому рапса, подвергаемые предварительной обработке механическим вальцеванием и пропитке печным топливом, при соотношении всех компонентов смеси, мас.%, зерно рапса 80, солома рапса 19, печное топливо 1, тепловой обработке в реакторе при температуре 80±5°С, при давлении 10 атм, с выдержкой в течение 75 с, в котором давление по завершении обработки сбрасывают, смешению до однородной массы с соломой рапса и формованию смеси пеллетизированием, с последующим извлечением пеллет и выдержкой в течение 24 часов при температуре воздуха 18±3°С. Технический результат - получение высококалорийных топливных пеллет из органического сырья с ежегодным возобновлением с высокими теплофизическими показателями твердого топлива и низкой сложностью процесса получения продукта в экологически чистых условиях. 1 ил., 1 пр., 1 табл. Подробнее
Дата
2019-12-18
Патентообладатели
"Общество с ограниченной ответственностью ""ЭКОТОПЛИВО"" "
Авторы
Степанов Владислав Васильевич , Степанова Ольга Владимировна , Степанова Евгения Витальевна
Способ получения наноструктурного композиционного материала на основе алюминия / RU 02716930 C1 20200317/
Открыть
Описание
Изобретение относится к порошковой металлургии, в частности, к получению наноструктурного композиционного материала на основе алюминия, модифицированного фуллереном С60. Может использоваться в машиностроении и авиакосмической отрасли. Смесь стружки сплава алюминия, содержащего 6 вес.% магния, и порошка фуллерена С60 в количестве 0,1÷0,5 вес. % подвергают обработке в планетарной шаровой мельнице в течение 45 мин при скорости вращения 1800 об/мин. Полученную порошковую смесь прессуют при 550 мм в заготовку диаметром 50 мм и подвергают прямой горячей экструзии со степенью деформации 6,2 при давлении 1-1,5 ГПа и температуре 280°С. Обеспечивается увеличение механических свойств при сохранении плотности на уровне исходного матричного сплава. 3 ил., 3 табл., 2 пр. Подробнее
Дата
2019-12-17
Патентообладатели
"Федеральное государственное бюджетное научное учреждение ""Технологический институт сверхтвердых и новых углеродных материалов"" "
Авторы
Баграмов Рустэм Хамитович , Евдокимов Иван Андреевич , Грязнова Марина Игоревна , Ломакин Роман Леонидович , Перфилов Сергей Алексеевич , Поздняков Андрей Анатольевич
Устройство для ультразвуковой обработки расплава легких сплавов / RU 02719820 C1 20200423/
Открыть
Описание
Изобретение относится к области цветной металлургии и может быть использовано при получении слитков легких сплавов, фасонном литье и дисперсном упрочнении алюминиевых сплавов путем введения в материал микро- или наночастиц. Устройство для ультразвуковой обработки расплава легких сплавов состоит из пьезоэлектрического преобразователя, концентратора, излучателя из ниобия, тантала или их сплавов длиной не менее длины волны продольных колебаний ультразвука на частоте его возбуждения, при этом на концентраторе в месте минимума механических колебаний выполнен крепежный поясок, симметрично оси концентратора и излучателя размещена охлаждающая камера, выполненная в виде полого цилиндра с патрубками ввода и вывода охлаждающей жидкости, одна из торцевых поверхностей охлаждающей камеры герметично закреплена на пояске концентратора, а вторая торцевая поверхность охлаждающей камеры имеет центральное отверстие и герметично закреплена на поверхности излучателя в месте, расположенном на расстоянии, равном четверти длины волны колебаний в излучателе от места соединения излучателя с концентратором. Техническим результатом изобретения является исключение нарушений акустического контакта концентратор - излучатель, повышение стабильности параметров колебательной системы в процессе обработки расплава. 1 ил. Подробнее
Дата
2019-12-09
Патентообладатели
"Общество с ограниченной ответственностью ""Центр ультразвуковых технологий"" "
Авторы
Хмелёв Владимир Николаевич , Нестеров Виктор Александрович , Абраменко Денис Сергеевич , Генне Дмитрий Владимирович , Тертишников Павел Павлович , Хмелёв Максим Владимирович , Цыганок Сергей Николаевич , Шалунов Андрей Викторович
Горячекатаная бесшовная насосно-компрессорная труба повышенной эксплуатационной надежности для нефтепромыслового оборудования / RU 02719618 C1 20200421/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству горячекатаной бесшовной насосно-компрессорной трубы повышенной эксплуатационной надежности, используемой для нефтепромыслового оборудования для добычи обводненной нефти и высокоминерализированных пластовых вод, содержащих углекислый газ, сероводород, ионы хлора, а также механические частицы. Бесшовная насосно-компрессорная труба получена из трубной заготовки из хромсодержащей стали, имеющей следующий состав, мас.%: от 0,22 до 0,38 углерода, 0,45 или менее кремния, от 0,80 до 1,45 марганца, 0,020 или менее фосфора, 0,010 или менее серы, 0,10 или менее алюминия, от 0,3 до 1,1 хрома, 0,12 или менее азота, по меньшей мере один компонент, выбранный из группы: 0,11 или менее ванадия и 0,07 или менее ниобия, остальное - железо (Fe) и неизбежные примеси. Для компонентов стали выполняются соотношения: 0,6≤|С|+|Mn|/4+|Cr|/5≤0,9 и 0,07≤|V|+2x|Nb|≤0,14, где |С|, |Mn|, |Cr|, |V| и |Nb| - абсолютная величина содержания, мас.%, углерода, марганца, хрома, ванадия и ниобия. Сталь может дополнительно содержать по меньшей мере один из: 0,20 мас.% или менее никеля, 0,25 мас.% или менее меди и 0,10 мас.% или менее титана. Трубную заготовку подвергают прошивке, прокатке в непрерывном стане и высокотемпературной термомеханической обработке в редукционном стане при температуре 950-1075°С с коэффициентом вытяжки 1,2-2,2. Обеспечивается требуемый уровень прочности, повышенная коррозионная стойкость и эксплуатационная надежность. 3 з.п. ф-лы, 1 ил., 3 табл. Подробнее
Дата
2019-12-04
Патентообладатели
"Акционерное общество ""Первоуральский новотрубный завод"" "
Авторы
Павлов Александр Александрович , Родионова Ирина Гавриловна , Александров Сергей Владимирович , Лаев Константин Анатольевич , Щербаков Игорь Викторович , Девятерикова Наталья Анатольевна , Ошурков Георгий Леонидович , Рогова Ксения Владимировна
Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования / RU 02721097 C1 20200515/
Открыть
Описание
Изобретение относится к области измерительной техники и касается способа бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования. Способ заключается в формировании светового пучка широкополосного излучения, идущего от объекта, фокусировке излучения и формировании изображения объекта, регистрации изображения объекта матричным приемником излучения и цифровой обработке изображения. Разделение светового пучка осуществляется с помощью линзового растра, установленного между оптической системой и матричным приемником излучения и состоящего из заданного числа линз, фокусирующих изображения на матричном приемнике излучения. Регистрация пространственно разнесенных спектральных изображений объекта выполняется установленным перед матричным приемником излучения растром, состоящим из светофильтров, число и положение которых соответствует числу и положению линз в линзовом растре. Кривые пропускания светофильтров соответствуют заданным положениям спектральных каналов. Технический результат заключается в обеспечении возможности определения распределения температуры и излучательной способности по поверхности объектов без механического или спектрального сканирования. 1 ил. Подробнее
Дата
2019-12-02
Патентообладатели
Федеральное государственное бюджетное учреждение науки Научно-технологический центр уникального приборостроения Российской академии наук
Авторы
Батшев Владислав Игоревич , Мачихин Александр Сергеевич , Неверов Семен Михайлович
СПОСОБ КОСТНОЙ ПЛАСТИКИ ПРИ ДЕНТАЛЬНОЙ ИМПЛАНТАЦИИ / RU 02719665 C1 20200421/
Открыть
Описание
Изобретение относится к хирургической стоматологии и может быть использовано при проведении костно-пластических операций по восстановлению альвеолярных костных тканей непосредственно после удаления зуба. По показаниям производят щадящее удаление зуба или корня (корней) зуба. Выполняют тщательный кюретаж лунки только что удаленного зуба, при этом удаляются все патологически измененные ткани. Затем осуществляют антисептическую обработку костной раны, например, раствором хлоргексидина биглюконата. Механическую очистку только что удаленного зуба производят при помощи бормашины, при этом удаляют коронку, пломбы любого вида, кариозные поражения и зубной налет. После механической очистки удаленный зуб промывают стерильным физиологическим солевым раствором и высушивают с помощью воздушного шприца. Затем зуб измельчают при помощи зубной мельницы в течение примерно 20 секунд. Указанного времени достаточно для того, чтобы получить частицы размером 300÷1000 мкм. Частицы меньше 300 мкм отсеивают. Полученный материал в виде частиц указанного размера стерилизуют 0,5 М NaOH с 30%-ным спиртом в течение 15 минут в стеклянной таре, в результате чего удаляются органические остатки, бактерии и токсины. Стерилизованные частицы высушивают с помощью воздушного шприца. В завершение процесса кондиционирования трансплантата, измельченный зуб помещают на 5 минут в натрий-фосфатный буферный раствор. Весь объем подготовленной лунки, а также возникшие дефекты костной стенки заполняют трансплантатом измельченного зуба и плотно утрамбовывают. Рану ушивают наглухо полиамидной нитью. Сроком на одну неделю назначают антибиотики, а также регулярное полоскание полости рта. Швы снимают через 10÷14 дней. По истечении трехмесячного срока после контрольного рентгенологического исследования возможно выполнение операции дентальной имплантации с целью восстановления дефекта зубного ряда. Способ позволяет в наиболее короткие сроки получить полноценный костный аутотрансплантат необходимого объема с наименьшим количеством послеоперационных осложнений. 4 з.п. ф-лы. Подробнее
Дата
2019-11-22
Патентообладатели
Дробышев Алексей Юрьевич
Авторы
Дробышев Алексей Юрьевич , Редько Николай Андреевич
Способ токарной обработки термопластичных полимерных материалов / RU 02722543 C1 20200601/
Открыть
Описание
Изобретение относится к обработке материалов резанием и может быть использовано при механической обработке заготовок из пластмасс, преимущественно из термопластичных полимерных материалов. Технической задачей, на решение которой направлено изобретение, является повышение физико-механических свойств изделий. Поставленная задача достигается тем, что в способе, включающем обработку заготовок из термопластичных полимерных материалов, при котором заготовке и режущему инструменту сообщают относительное движение формообразования, а подачу осуществляют дискретно, согласно изобретению одновременно с резанием производят опережающее вакуумирование поверхности заготовки. 1 ил. Подробнее
Дата
2019-11-19
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Тихоокеанский государственный университет"" "
Авторы
Еренков Олег Юрьевич , Яворский Даниил Олегович , Каленский Андрей Михайлович
СПОСОБ ПРОИЗВОДСТВА ПОЛИЭТИЛЕНОВЫХ ТРУБ / RU 02722503 C1 20200601/
Открыть
Описание
Изобретение относится к формованию или соединению пластиков, в частности к экструзионному формованию, а именно пропусканию формуемого материала через насадки, которые придают требуемую форму изделию, и возможности его последующей механической обработки. Техническим результатом является создание экологически чистой технологии путем изготовления многослойных технических полиэтиленовых труб из переработанных полимерных отходов с сохранением требуемой жесткости, механической плотности и адгезионного сцепления полиэтилена в требуемых пределах, упрощение восстановительно-ремонтных работ на закрытых участках трубопровода методом горизонтально-направленного бурения благодаря возможности нарезания резьбы на концах труб. Указанный технический результат достигается тем, что в способе производства полиэтиленовых труб сортируют вторичное сырье на отходы отработанного полиэтилена высокого давления и полипропилена. Затем рассортированное сырье, каждое в отдельности, подвергают дроблению, моют полученную дробленку, которую далее агломерируют и гранулируют, фасуют в мешки. Полученные гранулы из полиэтилена высокого давления и полипропилена засыпают в ёмкость экструдера, добавляют осушитель. При необходимости получения многослойной трубы количество экструдеров возрастает. Из полученной расплавленной смеси формируют полиэтиленовую трубу, которую нарезают на заготовки, на концах последних выполняют резьбу. 4 з.п. ф-лы. Подробнее
Дата
2019-11-16
Патентообладатели
"Общество с ограниченной ответственностью ""Курганский завод полиэтиленовых труб"" "
Авторы
Колесников Владимир Александрович , Пережогин Валерий Юрьевич
Способ модификации поверхности изделий из титана / RU 02718028 C1 20200330/
Открыть
Описание
Изобретение относится к металлургии, а именно к способу модификации поверхности, а именно к электронно-пучковой обработке и нанесению тонких пленок, и может быть использовано в авиационной, машиностроительной и других областях промышленности, а также в медицине. Способ модификаций обработки поверхности изделий из титана заключается в том, что поверхности изделий оплавляют концентрированными потоками энергии с последующим осаждением плазмохимическим методом на нее кремний-углеродной пленки в смеси аргона и паров полифенилметилсилоксана с использованием импульсного биполярного смещения амплитудой отрицательного импульса от 100 В до 700 В, прикладываемого к оснастке с изделиями. Предварительное оплавление поверхности осуществляют импульсным широкоапертурным электронным пучком. В качестве исходного материала для получения кремний-углеродной пленки используют полифенилметилсилоксан. Обеспечивается повышение механических и трибологических свойств изделий из титана, обладающих биосовместимостью и сочетающих в себе высокую твердость, низкий коэффициент трения и низкую скорость износа. 2 з.п. ф-лы, 1 ил., 2 табл, 2 пр. Подробнее
Дата
2019-11-14
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук,
Авторы
Гренадёров Александр Сергеевич , Оскомов Константин Владимирович , Соловьев Андрей Александрович , Онищенко Сергей Александрович
Способ изготовления композитного бампера для наземного транспортного средства / RU 02723856 C1 20200617/
Открыть
Описание
Изобретение относится к области машиностроения, в частности автомобилестроения, и может быть использовано при изготовлении конструктивных элементов наземных транспортных средств, в том числе грузовых и автобусов, таких как бамперы транспортных средств, выполняющие защитную функцию, функцию декоративного дизайна. Способ изготовления бампера заключается в формировании модели, покрытии модели разделительным веществом, накладывании на модель необходимого количества слоев препрега из базальтовой ткани, накладывании перфорированной пленки и затем впитывающего слоя. Затем размещают модель с уложенными слоями препрега в вакуумном мешке и подключают насос. Модель размещают в печи под воздействие температуры и давления. Сначала нагревают в печи до 75°C при скорости нагрева изделия 1,5-2°C/минуту и выдерживают при этой температуре в течение 30 минут. Затем производят последующий нагрев до 120°C со скоростью нагрева 1,5°C/минуту, с выдержкой при температуре 120°C в течение 30 минут. После чего охлаждают со скоростью не более чем 3°C/минуту до температуры окружающей среды. Далее охлаждают модель с изготовленным бампером. На всех операциях обеспечивают создание вакуума от 0,8 до 0,99 атм. Готовый бампер подвергают механической обработке. Технический результат от использования всех существенных признаков изобретения заключается в получении изделия, имеющего повышенные прочностные характеристики при значительном (до 40% ) снижении веса. Подробнее
Дата
2019-11-12
Патентообладатели
Общество с ограниченной ответственностью «АЛ-СЕРВИС»
Авторы
Яновский Алексей Алексеевич
Способ получения коррозионностойкого электрохимического покрытия цинк-никель-кобальт / RU 02720269 C1 20200428/
Открыть
Описание
Изобретение относится к области гальваностегии, в частности к процессам электрохимического осаждения покрытия Zn-Ni-Co, и может быть использовано в производстве конструкционных коррозионностойких материалов для эксплуатации в агрессивных средах. Способ включает электроосаждение цинк-никель-кобальтового покрытия на поверхность стали, подвергнутую предварительной механической обработке, обезжириванию, травлению, удалению окисных пленок с последующей промывкой в воде, при этом электроосаждение проводят используя реверсивный режим от 125 до 155 циклов электролиза при катодной плотности тока ik=0,5-2,0 А/дм2, анодной плотности тока ia=4,0-5,0 А/дм2, при длительности катодной поляризации одного цикла τk=15-20 с и длительности анодной поляризации одного цикла τа=1,0 с, при температуре электролита с графитовым анодом от 20°С до 25°С, рН от 4,5 до 5,5, при этом электролит дополнительно содержит соль серной кислоты Na2SO4, в качестве ZnSO4 содержит ZnSO4⋅7H2O, в качестве NiSO4 - NiSO4⋅7H2O, в качестве CoSO4 - CoSO4⋅7H2O при следующем соотношении компонентов, г/л: ZnSO4⋅7H2O 60,0-72,0; NiSO4⋅7H2O 34,0-39,0; CoSO4⋅7H2O 19,7-33,7; Na2SO4 60,0-72,0; глицин 52,5-70,0; вода остальное. Технический результат: снижение тока коррозии, приводящее к повышению коррозионной стойкости и равномерности микроструктуры нанесенного покрытия, интенсификация процесса электрохимического осаждения и сокращение времени проведения процесса, а также повышение экологической безопасности и снижение экономических затрат производства. 16 пр. Подробнее
Дата
2019-11-12
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Саратовский государственный технический университет имени Гагарина Ю.А."" "
Авторы
Почкина Светлана Юрьевна , Соловьева Нина Дмитриевна , Ченцова Елена Владимировна
УЛЬТРАЗВУКОВОЙ СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ В РЕЛЬСАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ / RU 02723146 C1 20200609/
Открыть
Описание
Использование: для определения напряженного состояния рельсовых плетей. Сущность изобретения заключается в том, что излучающим пьезоэлектрическим преобразователем в нагруженный рельс и ненагруженный его аналог вводят импульсы ультразвуковых продольных и поперечных волн, принимают приемными преобразователями трансформированные поперечные волны от падающих на исследуемый объект продольных волн и трансформированные продольные волны от падающих на исследуемый объект поперечных волн, измеряют времена прохождения этих волн в нагруженном и ненагруженном рельсах, определяют изменение времени задержки прошедших сигналов и по их разности определяют величину напряжения, при этом предварительно формируют зондирующий сигнал с частотой резонанса пьезоэлектрических преобразователей, а отсчет времени прохождения волн осуществляют высокочастотным аналого-цифровым преобразователем при достижении максимального значения амплитуды сигнала в интервале дискретизации не более Δτ=10⋅10-9 c. Технический результат: повышение достоверности определения механических напряжений и сокращение времени обработки информации. 2 н. и 2 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-11-07
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Сибирский государственный университет путей сообщения"" "
Авторы
Бехер Сергей Алексеевич , Степанова Людмила Николаевна , Кабанов Сергей Иванович , Ельцов Андрей Егорович , Курбатов Александр Николаевич
СОСТАВ И СПОСОБ ПОЛУЧЕНИЯ БИОКОМПОЗИТНОЙ КОРМОВОЙ ДОБАВКИ ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ И ПТИЦЫ / RU 02721795 C1 20200522/
Открыть
Описание
Группа изобретений относится к сельскому хозяйству, в частности к составу биокомпозитной кормовой добавки для сельскохозяйственных животных и птицы и способу его получения. Состав содержит обогащенную и активированную соляной 10% кислотой монтмориллонитсодержащую глину и биомассу кормовых дрожжей выбранных из Pichia pastoris, Faex medicinalis, Saccaromicete spp или их комбинации, при следующем соотношении исходных компонентов в масс. %: обогащенная и активированная соляной 10% кислотой монтмориллонитсодержащая глина - от 10 до 20, биомасса кормовых дрожжей от 90 до 80. Способ получения характеризуется тем, предварительно седиментационно обогащают и активируют монтмориллонитсодержащую глину соляной кислотой 10%, затем промывают очищенной дистиллированной водой до нейтральной среды, сушат при температуре не более 105°C и измельчают до однородной консистенции. Биомассу кормовых дрожжей, выбранных из Pichia pastoris, Faex medicinalis, Saccaromicete spp или их комбинации, заливают дистиллированной водой, перемешивают до однородной массы и обрабатывают в ультразвуковом генераторе при 1500 Гц 4 раза по 10 минут, охлаждая систему в течение 5 минут после каждой обработки, затем обработанную биомассу дрожжей центрифугируют, сливают супернатант, осадок биомассы нагревают до 40°C и постепенно при постоянном механическом перемешивании добавляют в обогащенную монтмориллонитсодержащую глину в заявленном соотношении. Смесь тщательно перемешивают в течение не менее 40 минут, затем подвергают мягкой сушке при t=65°С до влажности не более 30% и перемалывают до тонкодисперсной однородной среды. Использование группы изобретений позволит профилактировать заболевания желудочно-кишечного тракта и интоксикацию различной этиологии. 2 н. и 1 з.п. ф-лы, 1 табл., 6 пр., 1 ил. Подробнее
Дата
2019-11-06
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Белгородский государственный национальный исследовательский университет"" "
Авторы
Круть Ульяна Александровна , Олейникова Ирина Ивановна , Кузубова Елена Валерьевна , Радченко Александра Игоревна
Стенд для испытаний датчиков цели взрывательных устройств / RU 02716073 C1 20200305/
Открыть
Описание
Изобретение относится к области испытания боеприпасов, конкретно - контактных датчиков цели различных взрывательных устройств (ДЦ ВУ) инженерных боеприпасов (ИБ) наземного применения. Техническим результатом является обеспечение возможности безопасного проведения испытаний различных типов ДЦ ВУ на всех стадиях их жизненного цикла с ускоренным процессом обработки результатов и повышенной степенью точности измерений. Технический результат достигается тем, что стенд для испытания датчиков цели взрывательных устройств содержит несущую металлоконструкцию, связанную с ней опорную плиту для размещения испытываемого изделия, механизм нагружения и комплект измерительных устройств, включающий устройства измерения усилий и перемещений, при этом фронтальная часть несущей металлоконструкции выполнена из бронелиста, связанная с ней опорная плита выполнена с возможностью регулируемого поворота относительно горизонтальной оси посредством закрепления на удлиняющих элементах системы параллельных рычагов, установленных на общем валу, приводимом во вращение посредством дополнительного рычага, соединенного с линейным механическим актуатором/штоком устройства измерения усилий, механизм нагружения выполнен в виде тонкостенной емкости, снабженной трубопроводными линиями с соответствующими регулирующими клапанами для наполнения/опорожнения жидкостью, устройство измерения перемещений выполнено в виде измерителя угла отклонения опорной плиты от горизонтали, а комплект измерительных устройств дополнительно содержит звукозаписывающую аппаратуру и скоростную фоторегистрирующую аппаратуру. 6 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-11-05
Патентообладатели
"Федеральное казенное предприятие ""Научно-исследовательский институт ""Геодезия"" "
Авторы
Колтунов Владимир Валентинович , Заборовский Александр Дмитриевич , Фурсов Юрий Серафимович , Ломакин Евгений Александрович , Пизаев Артем Олегович , Виноградов Анатолий Валентинович
ЭЛЕКТРОФИЗИЧЕСКИЙ СПОСОБ ПОВЫШЕНИЯ ПРОЧНОСТИ И МЕХАНИЧЕСКОЙ УСТОЙЧИВОСТИ ЛИСТОВЫХ ЗАГОТОВОК ИЗ АЛЮМИНИЙ-МАГНИЕВЫХ СПЛАВОВ / RU 02720289 C1 20200428/
Открыть
Описание
Изобретение относится к металлургии, а именно к обработке давлением сплавов системы Аl-Mg, проявляющих прерывистую деформацию и локализацию деформации в полосах, негативно влияющих на качество поверхности и коррозионные свойства этих сплавов. Способ обработки листовых заготовок промышленных алюминий-магниевых сплавов включает механическую обработку заготовки давлением с одновременным пропусканием импульсного электрического тока. Пропускают через заготовку импульсный электрический ток с частотой следования 800 Гц прямоугольных импульсов, амплитудой 30-34 А/мм2, длительностью 1 мс, вызывающего джоулев нагрев заготовки не более чем на 1°С. Оптимизируются энергозатраты при электротоковой обработке промышленных сплавов системы Al-Mg, применяемых при производстве авиакосмической техники и автомобилей, за счет использования импульсного электрического тока для наиболее эффективного подавления механических неустойчивостей с одновременным повышением прочности этих сплавов. 6 ил. Подробнее
Дата
2019-11-05
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Тамбовский государственный университет имени Г.Р. Державина"" "
Авторы
Шибков Александр Анатольевич , Желтов Михаил Александрович , Золотов Александр Евгеньевич , Денисов Андрей Александрович , Гасанов Михаил Фахраддинович , Михлик Дмитрий Валерьевич , Кочегаров Сергей Сергеевич