Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
ВЫСОКОПРОЧНЫЙ ХЛАДОСТОЙКИЙ ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ / RU 02715931 C1 20200304/
Открыть
Описание
Изобретение относится к области металлургии, в частности к составам высокопрочного хладостойкого чугуна с шаровидным графитом для производства трубчатых свай, эксплуатирующихся в любых климатических условиях, преимущественно в районах Арктики и Крайнего Севера. Высокопрочный хладостойкий чугун с шаровидным графитом содержит, мас. %: углерод 3,85-4,05, кремний 2,7-3,3, марганец 0,2-0,5, хром до 0,05, магний 0,03-0,06, кальций 0,002-0,007, алюминий 0,003-0,01, цирконий 0,01-0,1, бор 0,005-0,007, сера до 0,022, фосфор до 0,03, никель 0,01-0,20, самарий 0,1-0,3, кобальт 0,002-0,12, железо остальное. Техническим результатом изобретения является повышение ударной вязкости высокопрочного хладостойкого чугуна с шаровидным графитом при отрицательных температурах. 2 табл. Подробнее
Дата
2019-10-10
Патентообладатели
"Акционерное общество ""Научно-производственное объединение ""Центральный научно-исследовательский институт технологии машиностроения"", АО ""НПО ""ЦНИИТМАШ"" "
Авторы
Андреев Валерий Вячеславович , Гущин Николай Сафонович , Дуб Владимир Семенович , Нуралиев Фейзулла Алибала оглы , Нуралиев Нурлан Фейзуллаевич , Тахиров Асиф Ашур оглы , Александров Николай Никитьевич , Степашкин Юрий Андреевич
Шихта для получения огнеупорного конструкционного керамического материала / RU 02720337 C1 20200429/
Открыть
Описание
Изобретение относится к огнеупорным материалам, которые могут быть использованы в черной и цветной металлургии в качестве футеровки доменных, шахтных и других печей. Шихта для получения огнеупорного конструкционного керамического материала включает, мас.%: карбидкремниевые порошки фракций 4,0-1,5 мм, 1,5-0,5 мм, 0,5-0,25 мм, 0,25-0,07 мм и 0,07-0,001 мм - 60-92; порошок кремния технический молотый 5,0-25,0; пудра алюминиевая 0,1-5,0; глинозём 0,1-20,0; декстрин и/или лингосульфонат кальциевый 0,5-5,0, при этом фракции карбидокремниевых порошков взяты от их общего количества в следующих мас.%: 4,0-1,5мм - 10-0, 1,5-0,5 мм - 5-50, 0,5-0,25 мм - 3-25, 0,25-0,07 мм - 2-25, 0,07-0,001 мм - 2-20. Технический результат – повышение коррозионной стойкости и стойкости к абразивному и эрозионному износу. 1 табл., 11 пр. Подробнее
Дата
2019-10-04
Патентообладатели
"Открытое акционерное общество "" Волжский абразивный завод"" "
Авторы
Данилова Оксана Юрьевна , Ушакова Наталья Викторовна
Способ нанесения углеродного покрытия / RU 02711277 C1 20200116/
Открыть
Описание
Изобретение относится к области металлургии и может быть использовано для нанесения углеродных покрытий путем термического разложения углеродосодержащих соединений на поверхности материала. Способ нанесения углеродного покрытия на поверхность изделия, в котором углекислый газ пропускают через активированный уголь при температуре 800-1000°С с получением CO газа, который на поверхности изделия, имеющего температуру 400-600°С, разлагается на C и CO2 с осаждением углерода на поверхность изделия, после чего изделие отжигают в инертной атмосфере при температуре 400-600°С. Обеспечивается упрощение процесса нанесения покрытия. 1 ил., 1 табл., 6 пр. Подробнее
Дата
2019-10-02
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Сибирский федеральный университет"" "
Авторы
Власов Олег Анатольевич , Казанцев Яков Викторович , Подшибякина Елена Юрьевна
Способ нанесения покрытия SnO2 / RU 02711386 C1 20200117/
Открыть
Описание
Изобретение относится к области металлургии, а именно к нанесению покрытия из диоксида олова, и может быть использовано при изготовлении защитных покрытий, а также при создании газовых сенсоров, оптоэлектрических и люминисцентных устройств. Печь с SnO устанавливают в емкость, закрытую подложкой, предварительно упомянутую емкость продувают инертным газом для удаления воздуха, затем печь с SnO нагревают до 1080-1430°С, испаряют SnO, пропускают газообразный SnO через упомянутую емкость и осаждают его на охлаждаемой подложке, после чего при той же температуре емкость продувают воздухом для окисления SnO до SnO2, а затем подложку подвергают термообработке при той же температуре в атмосфере воздуха. Обеспечивается получение покрытия из диоксида олова толщиной от 750 нм до 200 мкм, имеющего однородную поверхность, при этом предложенный способ технологичен, прост в аппаратурном оформлении и не требует значительных затрат энергии. 1 ил., 2 пр. Подробнее
Дата
2019-10-02
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Сибирский федеральный университет"" "
Авторы
Власов Олег Анатольевич , Казанцев Яков Викторович , Подшибякина Елена Юрьевна
СПОСОБ ОЧИСТКИ РАСПЛАВА ФЕРРОСИЛИЦИЯ ОТ ПРИМЕСЕЙ / RU 02714562 C1 20200218/
Открыть
Описание
Изобретение относится к металлургии и может быть использовано в производстве высокопроцентных марок ферросилиция. Перед выпуском расплава ферросилиция из печи в ковш загружают окислительный флюс основностью 0,15-0,24 и кратностью 0,12-0,18 и одновременно с выпуском продувают расплав смесью кислорода и сжатого воздуха, поддерживая соотношение кислород-сжатый воздух 1:(1-3) и расход окислительного газа (в пересчете на кислород) 12-30 нм3/т расплава ферросилиция. Изобретение позволяет снизить содержание алюминия, кальция и углерода в сплаве без значительных энергозатрат на рафинирование расплава. 1 табл. Подробнее
Дата
2019-10-01
Патентообладатели
Ёлкин Константин Сергеевич , Кашлев Иван Миронович
Авторы
Ёлкин Константин Сергеевич , Кашлев Иван Миронович
Способ производства толстолистового проката с повышенной деформационной способностью (варианты) / RU 02709071 C1 20191213/
Открыть
Описание
Изобретение относится к области металлургии, в частности к производству горячекатаного проката толщиной от 7 до 50 мм. Для обеспечения повышенной деформационной способности проката класса прочности К60-К65 при сохранении его высокой ударной вязкости и хладостойкости осуществляют аустенитизацию заготовки из стали, содержащей, мас. %: C 0,04÷0,09, Mn 1,4÷2,2, Si 0,10÷0,50, Al 0,02÷0,06, Ti 0,003÷0,035, Nb 0,01÷0,08, V не более 0,10, Mo не более 0,50, Ni не более 0,60, Cu не более 0,30, Cr не более 0,50, N 0,002÷0,010, S не более 0,005, P 0,003÷0,015, Fe и неизбежные примеси – остальное, имеющей коэффициент трещиностойкости Рст ≤ 0,24, черновую и чистовую горячую прокатку заготовки с температурой окончания чистовой прокатки ТКП=(960-310⋅C-80.Mn-20.Cu-15⋅Cr-55⋅Ni-80⋅Mo)±40°С. По первому варианту способа после чистовой прокатки проводят многостадийное охлаждение листа, при этом на первой стадии лист охлаждают водой со скоростью 15÷50°С/с до температуры Т1 в интервале от (595-372⋅C-62⋅Mn-27⋅Ni-44⋅Cr-27⋅Mo) до (830-270⋅C-90⋅Mn-37⋅Ni-70⋅Cr-83⋅Mo)°С, на второй стадии - на воздухе в течение 20÷60 с, затем - водой со скоростью 15÷50°С/с до температуры не более T2=(410-37,7⋅Mn-18,9⋅Ni-37,7⋅Cr-27⋅Mo)°С и окончательно охлаждают на воздухе или в стопе. По второму варианту способа после чистовой прокатки лист охлаждают на первой стадии водой со скоростью VП≥(17,8+50,8⋅C-8⋅Mn+0,7⋅Cr-16,8⋅Ni+7⋅Cu-22,8⋅Mo-4,9⋅Nb)°С/с, которая соответствует диапазону 2÷13°С/с, до температуры бейнитного превращения ТБП=(830-270⋅С-90.Mn-37⋅Ni-70⋅Cr-83⋅Мо)±20 °С, затем - водой со скоростью 6÷12°С/с до температуры не более Т2 (°С) и окончательно- на воздухе или в стопе. 2 н. и 2 з.п. ф-лы, 2 ил., 3 табл. Подробнее
Дата
2019-09-30
Патентообладатели
"Акционерное общество ""Выксунский металлургический завод"" "
Авторы
Эфрон Леонид Иосифович , Рингинен Дмитрий Александрович , Багмет Олег Александрович , Головин Сергей Викторович , Ильинский Вячеслав Игоревич , Матросов Максим Юрьевич , Кичкина Александра Андреевна , Шульга Екатерина Викторовна
Способ непрерывного неразрушающего контроля характеристики качества движущего плоского проката / RU 02724130 C1 20200622/
Открыть
Описание
Изобретение относится к области металлургии и машиностроения, в частности к процессам непрерывного контроля плоского проката, и предназначено для косвенного непрерывного контроля характеристик его качества. Технический эффект, заключающийся в повышении точности текстурного контроля, а также точности определения положения фактических значений характеристик качества относительно допустимых (регламентируемых) интервалов этих характеристик, достигается за счёт того, что осуществляется контроль текстуры проката со стороны базовых опорных поверхностей, по которым движется прокат, то есть путём совмещения базовой и отражающей поверхности проката. 6 ил., 3 табл. Подробнее
Дата
2019-09-26
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Вятский государственный университет"" "
Авторы
Певзнер Михаил Зиновьевич
СПОСОБ ВЫПЛАВКИ ФЕРРОСИЛИЦИЯ В ЗАКРЫТЫХ РУДНОТЕРМИЧЕСКИХ ПЕЧАХ / RU 02714561 C1 20200218/
Открыть
Описание
Изобретение относится к области металлургии, в частности к электротермическому способу получения ферросилиция. Ферросилиций в закрытых рудовосстановительных электрических печах получают восстановлением кварцита с помощью углеродистых восстановителей в присутствии стальной стружки. Непосредственно под свод печи между электродами дополнительно загружают шихту, состоящую из кварцита, стальной стружки с углеродистым восстановителем, превышающим стехиометрическое количество на 2-8 мас.%, с периодичностью разовой загрузки в 16-24 часа, при этом количество загруженной шихты в печь с повышенным избытком углеродистого восстановителя составляет 4-10% от общего количества загружаемой шихты. Изобретение позволяет снизить время простоев на чистку подсводового пространства и газозаборных патрубков. 1 табл., 4 пр. Подробнее
Дата
2019-09-25
Патентообладатели
Ёлкин Константин Сергеевич
Авторы
Ёлкин Константин Сергеевич
СПОСОБ ЗАЩИТЫ КАТОДНЫХ БЛОКОВ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЁРОВ С ОБОЖЖЕННЫМИ АНОДАМИ, ЗАЩИТНАЯ КОМПОЗИЦИЯ И ПОКРЫТИЕ / RU 02724236 C1 20200622/
Открыть
Описание
Изобретение относится к области цветной металлургии, а именно к электролитическому производству алюминия, и может быть использовано для защиты катодных блоков алюминиевых электролизеров с обожженными анодами для уменьшения износа катодных блоков и продления срока службы. Способ получения защитного композиционного покрытия TiB2-C катодных блоков алюминиевых электролизеров с обожженными анодами включает приготовление композиционной смеси тугоплавкого материала со связующим, нанесение смеси на поверхность катодных блоков и сушку полученного покрытия. Связующее используют в виде сульфированных продуктов реакции нафталина с формальдегидом с коксовым остатком не менее 30 мас.%, тугоплавкий материал используют в виде бимодальной или полимодальной смеси порошков диборида титана или порошка диборида титана, гранулометрический состав которого характеризуется бимодальным или полимодальным распределением частиц по размерам. После сушки на поверхность покрытия наносят слой графитового порошка для защиты от окисления в процессе запуска с формированием при разогреве подины защитного композиционного покрытия TiB2-C, смачиваемого алюминием. Применение изобретения позволяет уменьшить износ и продлить срок службы катодных блоков алюминиевых электролизеров с обожженными анодами. 5 н. и 10 з.п. ф-лы, 4 пр. Подробнее
Дата
2019-09-24
Патентообладатели
"Общество с ограниченной ответственностью ""Объединенная компания РУСАЛ Инженерно-технологический центр"" "
Авторы
Пузанов Илья Иванович , Завадяк Андрей Васильевич , Нагибин Геннадий Ефимович , Федорова Елена Николаевна , Добромыслов Сергей Сергеевич , Кириллова Ирина Анатольевна
КОНТАКТНОЕ УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЭЛЕКТРОФИЗИЧЕСКИХ ПАРАМЕТРОВ ПОРОШКОВОГО МАТЕРИАЛА ПРИ ЕГО СЖАТИИ / RU 02722574 C1 20200601/
Открыть
Описание
Изобретение относится к области исследования материалов, а именно определения электрофизических параметров порошковых материалов, и может найти применение в материаловедении, электротехнике, физике твердого тела и порошковой металлургии. Устройство содержит раму, на которой размещены подвижная и неподвижная опоры, узлы создания и измерения перемещения, измерительная ячейка, содержащая изоляционную втулку для размещения в ней образца исследуемого материала, цилиндрические электроды, выполненные с заходной частью для размещения в изоляционной втулке и установленные через изоляторы на подвижной и неподвижной опорах. Рама выполнена в виде, по крайней мере, двух штанг, связанных с подвижной и неподвижной опорами, оси штанг параллельны оси измерительной ячейки, при этом узел измерения перемещения закреплен на одной опоре, а его чувствительный элемент кинематически связан с другой опорой. Изоляционная втулка выполнена из монокристаллического оксида алюминия. Устройство содержит узел контроля усилия сжатия исследуемого образца в процессе измерения, кинематически связанный с подвижной опорой. Технический результат: повышение точности измерений плотности и определения электрофизических параметров исследуемого порошкового материала в процессе его уплотнения; расширение диапазона измерений плотности и номенклатуры исследуемых порошкообразных материалов. 4 з.п. ф-лы, 6 ил. Подробнее
Дата
2019-09-24
Патентообладатели
"Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии ""Росатом"" , Федеральное государственное унитарное предприятие ""Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики"" "
Авторы
Шаповалов Александр Михайлович , Коршунов Кирилл Владимирович , Мокрушин Валерий Вадимович
Способ выплавки стали в конвертере / RU 02716554 C1 20200312/
Открыть
Описание
Изобретение относится к металлургии, конкретнее к процессам выплавки стали в конвертере. Осуществляют подачу в конвертер металлошихты в виде жидкого чугуна и металлолома, шлакообразующих материалов, агломерата, продувку расплава кислородом сверху через фурму, изменение по ходу продувки положения фурмы над уровнем расплава в спокойном состоянии и расхода кислорода. Присадку агломерата осуществляют до начала продувки расплава кислородом или/и во время продувки расплава кислородом до момента окончания интенсивного обезуглероживания расплава, при этом используют агломерат, дополнительно содержащий окислы цинка и титана. Изобретение позволяет разработать технологию выплавки стали в конвертере, позволяющей утилизировать цинксодержащие отходы, снизить себестоимость производства стали и увеличить выход годной стали. 3 з.п. ф-лы. Подробнее
Дата
2019-09-24
Патентообладатели
"Публичное акционерное общество ""Северсталь"" "
Авторы
Галеру Кирилл Егорович , Алексеев Алексей Васильевич , Ключников Александр Евгеньевич , Краснов Алексей Владимирович , Матанцев Василий Валерьевич , Чиркова Наиля Шамильевна
СПОСОБ ВАКУУМНОЙ ТЕРМИЧЕСКОЙ ДЕГАЗАЦИИ ГРАНУЛ ЖАРОПРОЧНЫХ, ТИТАНОВЫХ СПЛАВОВ И СТАЛЕЙ В ПОДВИЖНОМ СЛОЕ И УСТРОЙСТВО / RU 02720008 C1 20200423/
Открыть
Описание
Изобретение относится к порошковой металлургии, в частности к термической дегазации гранул жаропрочных, титановых сплавов или сталей и подготовке их к компактированию. Вакуумную термическую дегазацию осуществляют в подвижном слое путем дозированной подачи гранул через специальный диспергатор со скоростью 30-50 кг/ч при температуре на 130-400°С и давлении не более 1⋅10-3 мм рт. ст. Заполняют гранулами стальную капсулу и осуществляют ее герметизацию путем пережима засыпного патрубка. Устройство для дегазации содержит бункер с гранулами, стальную капсулу, вибростол, вакуумную систему, ферму обслуживания и диспергатор, имеющий в нижней зоне охлаждающую систему, состоящий из засыпки стальных шаров, размещенных в нескольких зонах, и снабженный нагревателями. Обеспечивается повышение эффективности процесса дегазации и улучшение технологических свойств порошка. 2 н. и 5 з.п. ф-лы, 3 ил., 1 табл., 1 пр. Подробнее
Дата
2019-09-23
Патентообладатели
"Публичное акционерное общество ""Русполимет"" "
Авторы
Рябцев Анатолий Данилович , Явтушенко Павел Михайлович , Миргородский Сергей Викторович , Демченко Алексей Игоревич
Высокоградиентный магнитный фильтр с жесткой матрицей / RU 02717817 C1 20200325/
Открыть
Описание
Изобретение относится к устройствам для очистки водных и газовых потоков от содержащихся в них частиц, обладающих ферро-, пара- и диамагнитными свойствами, и может быть использовано в объектах атомной и тепловой энергетики, химической и пищевой промышленности, металлургии, в медицине, химической и других отраслях промышленности, где используются подобные процессы. Высокоградиентный магнитный фильтр с жесткой матрицей включает цилиндрический корпус из немагнитного коррозионностойкого материала с входным и выходным патрубками, магнитную систему, расположенную снаружи корпуса, матрицу из коррозионностойкого материала, расположенную внутри корпуса на пути прохождения очищаемого потока жидкости или газа, включающую в себя по меньшей мере один металлический коррозионно-стойкий проволочный фильтрующий элемент, выполненный для формирования высоких градиентов магнитного поля, в виде немагнитной проволочной основы заданного диаметра, дополнительно имеющей проволочную навивку в виде пружины или проволочные кольца, закрепленные на ней. Проволока, используемая для размещения на проволочной основе, имеет предпочтительный диаметр в интервале 20-60 мкм и может быть выполнена из магнитно-мягкого или магнитно-жесткого материала. Проволочная основа имеет диаметр в интервале 300-1200 мкм. Металлический проволочный фильтрующий элемент может быть выполнен в виде сетки различного плетения, или стержней заданной длины, или металлической ваты, или хаотично или упорядочено намотанных клубков проволоки. Конкретное исполнение фильтрующего элемента выбирается исходя из параметров очищаемой технологической среды. Технический результат: повышение эффективности очистки технологических сред от ферро-, пара- и диамагнитных примесей. 3 з.п. ф-лы, 4 ил. Подробнее
Дата
2019-09-16
Патентообладатели
"Федеральное государственное унитарное предприятие ""Научно-исследовательский технологический институт имени А.П. Александрова"" "
Авторы
Гусев Борис Александрович
Способ приготовления адсорбента для очистки газа и жидкости / RU 02709689 C1 20191219/
Открыть
Описание
Предлагаемое изобретение относится к газоперерабатывающей и газохимической промышленности, в частности к производству адсорбентов для очистки природных и попутных газов от нежелательных примесей, таких как хлористый водород, хлор, сероводород и меркаптаны. Может быть использовано в нефтехимической, нефтеперерабатывающей, на предприятиях цветной металлургии, химической промышленности и для охраны окружающей среды. Активность предлагаемого адсорбента по связыванию кислых газов, таких как хлористый водород, хлор, сероводород, обусловлен наличием в составе гранул оксида цинка. При адсорбции происходит химическое связывание хлористого водорода, хлора, сероводорода с образованием хлорида цинка или сульфида цинка. Поэтому необходимо обеспечить доступность активного компонента в грануле. Мелкодисперсный моногидрат оксида алюминия псевдобемитной модификации после прокалки при температурах 400-500°С переходит в оксид алюминия, который инертен к кислым газам и обеспечивает прочность и стабильность гранул. Введение в состав шихты модифицированного крахмала обеспечивает дополнительную пластичность при формовке. А также после прокалки выгорает и дает дополнительную доступность оксида цинка в порах гранул. Задача настоящего изобретения заключается в получении гранулированного адсорбента с высокой прочностью и адсорбционной емкостью по кислым газам. 1 табл. Подробнее
Дата
2019-09-11
Патентообладатели
Рахматуллин Эльвир Маратович , Бодрый Александр Борисович , Тагиров Айдар Шамилевич , Усманов Ильшат Фаритович
Авторы
Рахматуллин Эльвир Маратович , Бодрый Александр Борисович , Тагиров Айдар Шамилевич , Усманов Ильшат Фаритович
Лёточный кирпич / RU 02718809 C1 20200414/
Открыть
Описание
Изобретение относится к области металлургии, в частности к чугунной летке шахтной печи. Чугунная летка содержит леточный кирпич, леточную стену с нишей. Леточный кирпич размещается в леточной стене во втулке, изготовленной из корундовой набивной массы МКН-96 с добавкой 2% фоскона в стержневом ящике и имеющей внутри металлический каркас и четыре отверстия для крепления ее к брони печи стальными шпильками с резьбой, гайками, пружинными шайбами, причем ниша леточной стены и втулка выполнены с заходной частью, при этом четыре шпильки с резьбой привариваются к броне печи, на них надевается втулка и четыре стальные пластины, которыми крепится леточный кирпич во втулке. Леточный кирпич в виде усеченного конуса с заходной частью изготовлен из корундовой набивной массы МКН-96 с добавкой 2% фоскона в стержневом ящике и имеет внутри металлический каркас с приваренными четырьмя стальными ручками и семью стальными шпильками для крепления металлического футерованного сливного носка. Металлические каркасы втулки и леточного кирпича сварены в сварочных кондукторах из стальной проволоки марки сталь 15 диаметром 5 мм, а в центре леточного кирпича выполнено леточное отверстие с размерами 28×42 мм. Обеспечивается увеличение срока службы леточного кирпича и уменьшение времени замены износившегося леточного кирпича на новый. 3 з.п. ф-лы, 5 ил., 3 табл. Подробнее
Дата
2019-09-09
Патентообладатели
Трусов Владимир Александрович
Авторы
Трусов Владимир Александрович
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОМАГНИТНОГО ПЕРЕМЕШИВАНИЯ РАСПЛАВЛЕННЫХ МЕТАЛЛОВ / RU 02712676 C1 20200130/
Открыть
Описание
Изобретение относится к металлургии, а именно к устройствам для электромагнитного перемешивания расплавленных металлов в литейном производстве. Технический результат - повышение эффективности перемешивания и увеличение эксплуатационной надежности электромагнитной системы устройства. В устройстве индуктор электромагнитного поля выполнен в виде рамы с отверстиями и вертикальными стойками, установленными попарно напротив друг друга с каждой стороны вдоль продольной оси индуктора. Магнитопровод устройства закреплен между вертикальными стойками и состоит из ярма и по крайней мере четырех зубцов, каждый из которых расположен между вертикальными стойками, образующими соответствующую пару. Устройство содержит блоки катушек, каждый из которых размещен между соседними парами вертикальных стоек с соответствующими зубцами, при этом каждый блок катушек состоит из стянутых между собой шпильками отдельных катушек при помощи внешних щек и дистанционных перемычек, выполненных из электроизоляционного материала. Каждый блок катушек зафиксирован на раме между вертикальными стойками с помощью по крайней мере четырех прижимов, установленных попарно напротив друг друга с каждой стороны индуктора в соответствующих соседних вертикальных стойках для каждого блока катушек. Ярмо магнитопровода является общим сердечником для блоков катушек, при этом каждый блок катушек сверху закрыт кожухом, который служит для направления охлаждающей среды к проводникам катушек, поступающей через отверстия рамы. 5 з.п. ф-лы, 10 ил. Подробнее
Дата
2019-09-09
Патентообладатели
"Общество с ограниченной ответственностью ""Резонанс"" "
Авторы
Горемыкин Виталий Андреевич , Приходько Сергей Валентинович
Способ изготовления стальных двухслойных горячекатаных листов / RU 02714150 C1 20200212/
Открыть
Описание
Изобретение относится к области металлургии, в частности к производству стальных листов, состоящих из основного слоя и плакирующего слоя из коррозионно-стойкой стали, предназначенных для изготовления труб большого диаметра, оборудования нефтеперерабатывающей, химической промышленности, а также других отраслей. Для обеспечения высокого качества соединения слоев - сплошности и повышения ударной вязкости основного слоя листа при отрицательной температуре испытаний стальную двухслойную заготовку, имеющую плакирующий слой из коррозионно-стойкой стали, ступенчато нагревают в печи, при этом вначале заготовку нагревают до температуры не менее 450°С при скорости нагрева N1 (°С/мин), соответствующей выражению N1=(k1⋅h)±0,5, где k1 - эмпирический коэффициент, равный 0,006÷0,010, h - номинальная толщина заготовки (мм), после чего заготовку нагревают со скоростью N2 (°С/мин) до температуры не менее Т2 (°С), при этом N2=(k2⋅h)±5, где k2 - эмпирический коэффициент, равный 0,06÷0,10, Т2=(Т3-150)±50, где Т3 - минимальная температура данной заготовки, требуемая к моменту ее выдачи из печи (°С), далее заготовку нагревают со скоростью N3 (°С/мин) до температуры, соответствующей диапазону от Т3 до (Т3+20), при этом N3=(k1⋅h)±0,5, после чего заготовку при поддержании ее температуры в диапазоне от Т3 до (Т3+20) выдерживают в печи в течение не менее 120 минут, далее осуществляют горячую прокатку заготовки, при этом завершают данную операцию при температуре прокатываемой заготовки не более 920°С, после чего осуществляют охлаждение полученного листа водой. 3 з.п. ф-лы, 1 табл. Подробнее
Дата
2019-09-03
Патентообладатели
"Акционерное Общество ""Выксунский металлургический завод"" "
Авторы
Головин Сергей Викторович , Мунтин Александр Вадимович , Самохвалов Максим Вячеславович , Мишустин Сергей Викторович , Щукин Константин Иванович , Филимонов Сергей Викторович , Дунаев Вячеслав Владимирович , Подтёлков Владимир Владимирович , Степанов Андрей Павлович
Способ производства горячекатаного рулонного проката из низколегированной стали / RU 02709075 C1 20191213/
Открыть
Описание
Изобретение относится к области металлургии. Для снижения сегрегационной и структурной неоднородности проката, достижения требуемого уровня его механических свойств при повышении однородности их распределения способ включает выплавку и непрерывную разливку стали, нагрев и горячую прокатку заготовки, ускоренное охлаждение прокатанной полосы и последующую ее смотку в рулон. При этом выплавляют сталь, содержащую мас.%: углерод 0,20÷0,27; марганец 0,80÷1,40; кремний 0,20÷0,30; хром не более 0,30; никель не более 0,30; медь не более 0,30; титан не более 0,040; алюминий 0,015÷0,060; азот не более 0,012; сера не более 0,010; фосфор не более 0,015; кальций не более 0,020; молибден не более 0,040; железо и примеси - остальное. Содержание в выплавляемой стали углерода, марганца, серы и фосфора соответствует соотношению (24,63⋅С+1,22⋅Mn+15⋅S+2,35⋅Р)≤8,46, в котором каждый символ химического элемента обозначает содержание данного элемента в стали в мас.%. Нагрев заготовки осуществляют в нагревательной печи при температуре 850÷1050°С, время нахождения заготовки в нагревательной печи t в мин соответствует соотношению t=(k1⋅С)±10, где k1 - эмпирический коэффициент, составляющий k1=100÷200, С - содержание углерода в стали в мас.%. В процессе ускоренного охлаждения прокатанной полосы не менее чем в пяти местах по длине отводящего рольганга на ее верхнюю поверхность дополнительно через сопла подают воду, при этом упомянутые сопла установлены таким образом, что угол, образованный осью канала сопла и горизонтальной плоскостью, не является прямым, причем расход воды, подаваемой упомянутым образом, соответствует диапазону 10÷15 м3/час на 1 м2 поверхности полосы. 6 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-08-19
Патентообладатели
"Акционерное Общество ""Выксунский металлургический завод"" "
Авторы
Сомов Сергей Александрович , Эфрон Леонид Иосифович , Солдатов Евгений Александрович , Мунтин Александр Вадимович , Ермаков Дмитрий Иванович , Кудашов Дмитрий Викторович
Способ термической обработки контактной пары из золото-медного сплава ЗлМ-80 для электрических слаботочных скользящих контактов / RU 02716366 C1 20200311/
Открыть
Описание
Изобретение относится к цветной металлургии, а именно к способу изменения структуры упорядочивающегося сплава золото-медь, ЗлМ-80, и может быть использовано в приборостроении, например, при производстве слаботочных скользящих контактов. Способ термической обработки контактной пары из золото-медного сплава ЗлМ-80 для электрических слаботочных скользящих контактов включает нагрев в защитной атмосфере контактной пары, состоящей из кольца и щетки, со скоростью не более 0,2 град/сек до температуры 400-550°С, выдержку не более 1 часа, медленное охлаждение со скоростью не более 0,2 град/сек до температуры 240-260°С, выдержку при этой температуре не менее 1 часа, повторный нагрев до температуры 300-350°С со скоростью не более 0,2 град/сек, выдержку при этой температуре не менее 1 часа, а затем охлаждение контактной пары до комнатной температуры. Изобретение направлено на уменьшение продолжительности термообработки за счет предварительной рекристаллизации исходно деформированного сплава ЗлМ-80, и снижение удельного электросопротивления сплава ЗлМ-80 за счет формирования в нем упорядоченной фазы CuAuI. 1 табл., 1 ил. Подробнее
Дата
2019-08-16
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук
Авторы
Волков Алексей Юрьевич , Глухов Андрей Васильевич
ГОРЯЧЕКАТАНАЯ ПОЛОСА ВЫСОКОЙ КОРРОЗИОННОЙ СТОЙКОСТИ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ И СПОСОБ ЕЕ ПРОИЗВОДСТВА / RU 02720284 C1 20200428/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству горячекатаных полос из низколегированной стали, используемых для изготовления электросварных труб магистральных трубопроводов. Сталь имеет следующий химический состав, мас.%: углерод 0,04-0,07, кремний 0,15-0,25, марганец 0,60-0,80, хром 0,13-0,26, никель не более 0,06, медь не более 0,06, алюминий 0,03-0,06, ванадий не более 0,06, ниобий 0,04-0,06, суммарное содержание ниобия, ванадия и титана не более 0,15, молибден не более 0,01, азот не более 0,006, бор не более 0,0005, кальций не более 0,006, сера не более 0,002, фосфор не более 0,012, железо и примеси остальное. Металлографическая структура полосы включает не более 10% перлита, остальное – феррит. Балл неметаллических включений составляет не более 2,5 по среднему, не более 3 - по максимальному, а балл зерна феррита не крупнее 8. Обеспечивается получение полос, имеющих предел текучести по меньшей мере 390 МПа, предел прочности по меньшей мере 480 МПа и работу удара KV при 0°С по меньшей мере 100 Дж, а также высокие показатели коррозионной стойкости, в частности, при испытании на стойкость к сульфидному растрескиванию под напряжением, равным 95% от установленного минимального предела текучести, коэффициент чувствительности к растрескиванию (CSR) составляет не более 2%, коэффициент длины трещин (CLR) составляет не более 15%, а коэффициент толщины трещин (CTR) составляет не более 5%. 2 н.п. ф-лы, 1 табл. Подробнее
Дата
2019-08-16
Патентообладатели
"Публичное акционерное общество ""Северсталь"" "
Авторы
Дудинов Михаил Валериевич , Барабошкин Кирилл Алексеевич , Митрофанов Артем Викторович , Вархалева Татьяна Сергеевна