Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
СПОСОБ ОПРЕДЕЛЕНИЯ РИСКА РАЗВИТИЯ ФИБРИЛЛЯЦИИ ПРЕДСЕРДИЙ У ПАЦИЕНТОВ С ИШЕМИЧЕСКОЙ БОЛЕЗНЬЮ СЕРДЦА, ПРИНИМАЮЩИХ ОМЕГА-3 ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ, ПРИ ПРОВЕДЕНИИ КОРОНАРНОГО ШУНТИРОВАНИЯ / RU 02722052 C1 20200526/
Открыть
Описание
Изобретение относится к области медицины, а именно к кардиологии, и может быть использовано для определения риска развития фибрилляции предсердий у больных ишемической болезнью сердца, принимающих омега-3 полиненасыщенные жирные кислоты, при проведении коронарного шунтирования. Определяют показатели: возраст в годах, диаметр левого предсердия в миллиметрах, концентрацию восстановленного глутатиона в мкмоль/г гемоглобина эритроцитов плазмы крови после операции, концентрацию малонового диальдегида в мкмоль/г гемоглобина эритроцитов плазмы крови после операции, активность матриксной металлопротеиназы-9 /мг белка плазмы крови после операции, омега-3 индекс в мембране эритроцитов плазмы крови после операции. Вычисляют индекс риска развития фибрилляции предсердий Р по оригинальной расчетной формуле. При Р меньше 0,5 развитие фибрилляции предсердий не прогнозируют; если индекс Р больше или равен 0,5, у пациента прогнозируют развитие фибрилляции предсердий. Способ позволяет определить риск развития фибрилляции предсердий у пациентов с ишемической болезнью сердца, принимающих омега-3 полиненасыщенные жирные кислоты, при проведении коронарного шунтирования. 38 пр. Подробнее
Дата
2019-12-30
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Самарский государственный медицинский университет"" Министерства здравоохранения Российской Федерации "
Авторы
Рубаненко Олеся Анатольевна , Рубаненко Анатолий Олегович , Щукин Юрий Владимирович
СПОСОБ МОДИФИКАЦИИ МЕМБРАН ДЛЯ УЛЬТРАФИЛЬТРАЦИИ ВОДНЫХ СРЕД / RU 02719165 C1 20200417/
Открыть
Описание
Изобретение относится к мембранной технологии и может найти применение для очистки и разделения воды и водных растворов в пищевой, фармацевтической, нефтехимической и других отраслях промышленности, при водоподготовке и создании особо чистых растворов. Способ модификации мембран для ультрафильтрации водных сред заключается в том, что предварительно определяют порог отсечения исходной мембраны и с учетом характеристик отделяемых загрязнителей и материала, из которого выполнена исходная мембрана, задают требуемый порог отсечения, затем в зависимости от характеристик исходной мембраны осуществляют выбор модификатора из анизотропных дисперсных материалов, выбранных из группы: нанофибриллярная целлюлоза, нанотрубки галлуазита, нанокристаллическая целлюлоза с размером частиц, соответствующих достижению заданного порога отсечения, причем выбранный модификатор подвергают химической обработке до получения значения дзета-потенциала, соответствующего заданному порогу отсечения, при этом в случае использования в качестве модификатора нанофибриллярной целлюлозы водную дисперсию нанофибриллярной целлюлозы смешивают с серной кислотой до достижения ее концентрации 20-65 мас.% и пероксидом водорода до достижения его концентрации 0,1-10,0 мас.% с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанофибриллярной целлюлозы от минус 36 до минус 200 мВ, в случае использования в качестве модификатора нанотрубок галлуазита водную дисперсию галлуазита смешивают с водным раствором полимера с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанотрубок галлуазита от минус 36 до минус 200 мВ, в случае использования в качестве модификатора нанокристаллической целлюлозы водную дисперсию нанокристаллической целлюлозы смешивают с серной кислотой до достижения ее концентрации 20-80 мас.% и пероксида водорода до достижения его концентрации 0,1-10,0 мас.% с последующей промывкой водой обработанного модификатора с обеспечением достижения дзета-потенциала нанокристаллической целлюлозы от минус 36 до минус 200 мВ, после чего исходную мембрану помещают в водную среду и проводят гидрофилизацию исходной мембраны путем подачи на ее рабочую поверхность дисперсии выбранного и обработанного одним из соответствующих вышеуказанных способов модификатора с образованием гидрофильного слоя на рабочей поверхности мембраны в процессе фильтрации дисперсии модификатора сквозь стенку мембраны. Достигаемый технический результат заключается в обеспечении формирования в ходе модификации мембраны гидрофильного разделительного слоя на рабочей поверхности мембраны с регулируемыми удельным зарядом и ориентацией анизотропных дисперсных частиц модификатора, что обеспечивает высокие барьерные свойства образующегося при самосборке заряженных частиц модификатора гидрофильного разделительного слоя. 2 ил., 7 пр. Подробнее
Дата
2019-12-26
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Российский государственный университет нефти и газа имени И.М. Губкина"" "
Авторы
Винокуров Владимир Арнольдович , Гущин Павел Александрович , Иванов Евгений Владимирович , Новиков Андрей Александрович , Анохина Татьяна Сергеевна , Волков Алексей Владимирович , Борисов Илья Леонидович , Василевский Владимир Павлович , Петрова Дарья Андреевна
Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы / RU 02722753 C1 20200603/
Открыть
Описание
Изобретение относится к электрохимическому способу получения микродисперсных порошков гексаборидов металлов лантаноидной группы. Способ включает синтез гексаборидов лантаноидов из хлоридсодержащего расплава, содержащего ионы бора и ионы лантаноида. В качестве хлоридсодержащего расплава используют расплав состава (CaCl2 – CaO) с добавками оксида бора B2O3 и оксида получаемого лантаноида Ln2O3. В процессе электролиза концентрации B2O3 и Ln2O3 поддерживают постоянными в количествах, обеспечивающих атомное соотношение бора к лантаноиду B/Ln = 6 при их суммарной концентрации в расплаве 5-10 мас.% от массы электролита. Синтез осуществляют в атмосфере воздуха в интервале температур 800-850°С, при катодной плотности тока 0,3-0,5 А/см2. Предложенный способ позволяет получить порошки гексаборидов лантаноидов с выходом по затраченному току электролиза (КПД) до 82% при упрощении и удешевлении технологии получения и стоимости целевого продукта. 7 ил., 7 пр. Подробнее
Дата
2019-12-25
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук
Авторы
Филатов Евгений Сергеевич , Чернов Яков Борисович , Шуров Николай Иванович , Чухванцев Денис Олегович , Роженцев Данил Александрович
Способ получения удобрения на основе пироугля, содержащего микроэлемент иод, и удобрение, полученное указанным способом / RU 02720913 C1 20200514/
Открыть
Описание
Изобретения относятся к сельскому хозяйству. Способ получения удобрения на основе пироугля заключается в том, что берут 10 мг иодида калия, растворяют в 100 мл дистиллированной воды, берут кремнезоль с массовой концентрацией диоксида кремния 39-41% и размером мицелл не более 6 нм, смешивают с водой в соотношении 1 часть кремнезоля к 3 частям воды, смешивают 100 мл раствора иодида калия и 400 мл раствора кремнезоля, берут 1 кг пироугля и добавляют 500 мл полученного водного раствора иодида калия и кремнезоля, далее пироуголь гранулируют, далее гранулы пироугля выдерживают при температуре 35°С в течение 4-х часов. Удобрение на основе пироугля с кремнезолем, размер мицелл которого не превышает 6 нм, которое содержит микроэлемент иод в концентрации 7,5 мкг/г по отношению к пироуглю. Изобретения позволяют повысить содержание микроэлемента иода в почве и в растениях, а также повысить качество зерна. 2 н.п. ф-лы, 4 ил., 6 пр. Подробнее
Дата
2019-12-25
Патентообладатели
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский федеральный университет"
Авторы
Селивановская Светлана Юрьевна , Галицкая Полина Юрьевна , Курынцева Полина Александровна , Рудакова Майя Анатольевна , Гордеев Александр Сергеевич , Канунников Кирилл Борисович
Способ получения адгезионной добавки для дорожного битума / RU 02723843 C1 20200617/
Открыть
Описание
Изобретение относится к химической промышленности, а именно к производству химических реагентов, представляющих собой продукт конденсации жирных кислот и аминов, использующихся в качестве присадки для дорожного битума. Получают адгезионную добавку для дорожного битума путем конденсации высших карбоновых кислот с аминосодержащими соединениями при нагревании с отгонкой воды по окончании реакции конденсации. В качестве аминосодержащего соединения берут аминоэтилэтаноламин или смесь аминосоединений, содержащих аминоэтилэтаноламин. Конденсацию ведут в две стадии в избытке аминоэтилэтаноламина при мольном соотношении высших карбоновых кислот и аминоэтилэтаноламина 1:1,1-1,5 соответственно. Конденсацию ведут при 170-220°С в два этапа: на первом этапе реакционную массу выдерживают в течение не менее 5 часов, а на втором этапе - под вакуумом в течение не менее 2 часов. Изобретение позволяет создать эффективную адгезионную присадку для дорожного битума, не требующую разбавления органическим растворителем, и обеспечивает прочное сцепление битума с минеральным материалом при концентрации адгезионной добавки в битуме до 0,5% масс. 4 з.п. ф-лы, 2 табл., 7 пр. Подробнее
Дата
2019-12-20
Патентообладатели
Открытое акционерное общество Химическая компания «НИТОН»
Авторы
Гарифуллин Дамир Шамильевич , Белоногов Константин Владимирович , Тарантаев Александр Георгиевич
СПОСОБ ИЗВЛЕЧЕНИЯ НИОБИЯ ИЗ КЕКОВ ОТ ВЫЩЕЛАЧИВАНИЯ КОМПЛЕКСНОГО РЕДКОМЕТАЛЛЬНОГО СЫРЬЯ СЛОЖНОГО СОСТАВА / RU 02717421 C1 20200323/
Открыть
Описание
Изобретение относится к технологии гидрометаллургической переработки комплексного редкометалльного сырья сложного состава. Ниобий извлекают из ниобийсодержащих кеков от выщелачивания комплексного редкометалльного сырья. Смешивают кек со смесью водных растворов плавиковой и серной кислот в концентрациях 80-90 г/л и 800-980 г/л соответственно и 50%-ным по объему раствором трибутилфосфата в октане при массовом соотношении твердой фазы и жидкой фазы, равном 1:(3-9), и объемном соотношении жидкой водной фазы и жидкой органической фазы, равном (2-3):(1-2), с получением пульпы. Интенсивно перемешивают пульпу при температуре 20-25°С и времени контакта фаз 5-10 мин. Декантируют пульпу в течение 15-25 мин, затем отделяют жидкую органическую фазу от жидкой водной фазы и твердой фазы фильтрацией. Способ обеспечивает высокую степень извлечения ниобия из комплексного редкометалльного сырья в органическую фазу и его концентрирование при невысоких температурных, временных и расходных параметрах процесса. 3 пр. Подробнее
Дата
2019-12-20
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""МИРЭА - Российский технологический университет"" "
Авторы
Пермякова Наталия Анатольевна , Цыганкова Мария Викторовна , Лысакова Елена Иосифовна
Способ диагностики преэклампсии по аминокислотному профилю плазмы крови / RU 02717942 C1 20200327/
Открыть
Описание
Изобретение относится к диагностике, а именно к способу диагностики преэклампсии по аминокислотному профилю плазмы крови. Способ диагностики преэклампсии по аминокислотному профилю плазмы крови, заключающийся в том, что методом хромато-масс-спектрометрии количественно определяют концентрацию 3-х аминокислот - карнозина, аргинина и этаноламина - в плазме крови; вычисляют значение оценочного параметра (Y) по эмпирической формуле, и при значении Y≥-0,59 делают вывод о развитии преэклампсии, при Y<-0,59 делают вывод, что беременность протекает в рамках индивидуальной физиологической нормы. Вышеописанный способ позволяет с высокой точностью идентифицировать возможные маркерные молекулы и диагностировать преэклампсию. 5 ил., 3 табл., 4 пр. Подробнее
Дата
2019-12-20
Патентообладатели
"федеральное государственное бюджетное учреждение ""Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова"" Министерства здравоохранения Российской Федерации "
Авторы
Ломова Наталья Анатольевна , Кан Наталья Енкыновна , Франкевич Владимир Евгеньевич , Кициловская Наталья Алексеевна , Амирасланов Эльдар Юсифович , Хачатрян Зарине Варужановна
Хромсодержащий катализатор жидкофазного синтеза метанола и способ его получения / RU 02721547 C1 20200520/
Открыть
Описание
Изобретение относится к химической промышленности, а именно к производству гетерогенных катализаторов процесса жидкофазного синтеза метанола, и может быть применено на предприятиях химической промышленности для получения метанола, который используется в качестве растворителя, экстрагента и сырья для синтеза формальдегида, сложных эфиров органических и неорганических кислот и добавок к топливу. Хромсодержащий катализатор жидкофазного синтеза метанола содержит сверхсшитый полистирол в качестве носителя и активный металл. Согласно изобретению в качестве активного металла используется хром, при этом содержание хрома в катализаторе составляет от 4 до 6 мас.%, а содержание сверхсшитого полистирола - 94÷96 мас.%. Используют сверхсшитый полистирол с площадью внутренней поверхности 950÷1050 м2/г. Способ получения хромсодержащего катализатора жидкофазного синтеза метанола включает обработку сверхсшитого полистирола раствором соли активного металла в тетрагидрофуране, дистиллированной воде и метаноле, приготовленном под током азота, высушивание, продувку азотом с расходом 30±5 мл/мин в течение 30±5 мин, продувку водородом с расходом 30±5 мл/мин в течение 30±5 мин, восстановление водородом, охлаждение до комнатной температуры и продувку азотом с расходом 30±5 мл/мин в течение 30±5 мин. Согласно изобретению в качестве раствора соли активного металла используют раствор ацетата хрома концентрацией 3,6÷3,7 мас.%, обработку носителя раствором ацетата хрома осуществляют сначала смешиванием в течение 10±0,5 мин, далее - с использованием ультразвука с частотой 60±0,5 кГц, мощностью 75±1 Вт в течение 2±0,1 мин, высушивание проводится при 105±5°C в течение 1±0,1 ч, а восстановление водородом проводится при 350±10°С с расходом 10±1 мл/мин в течение 3±0,1 ч. Технический результат изобретения – повышение активности, селективности и операционной стабильности гетерогенного катализатора в реакции жидкофазного синтеза метанола. 2 н. и 1 з.п. ф-лы, 26 пр. Подробнее
Дата
2019-12-18
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Тверской государственный университет"" "
Авторы
Тихонов Борис Борисович , Матвеева Валентина Геннадьевна , Косивцов Юрий Юрьевич , Манаенков Олег Викторович , Григорьев Максим Евгеньевич , Долуда Валентин Юрьевич
Способ коррекции бактериального гнойного менингита с помощью 2-этил-6-метил-3-гидроксипиридиния 2,6-дихлорфенил(амино)фенилэтаноата в условиях эксперимента / RU 02724883 C1 20200626/
Открыть
Описание
Изобретение относится к медицине, в частности к экспериментальной фармакологии, неврологии и инфекционным заболеваниям, и может быть использовано для лечения бактериального гнойного менингита. Для этого проводят моделирование бактериального гнойного менингита у лабораторных крыс путем введения в субарахноидальное пространство 10 мкл суспензии, содержащей Streptococcus pneumoniae в концентрации 5*109 КОЕ/мл, с последующей коррекцией 2-этил-6-метил-3-гидроксипиридиния 2,6-дихлорфенил(амино)фенилэтаноатом в дозировке 25 мг/кг, который вводят через 7 часов после индукции менингита внутримышечно однократно, и последующей коррекцией цефтриаксоном, инициируемой через 18 часов после индукции менингита, в дозировке 100 мг/кг/сут внутримышечно 1 раз в день в течение 7 дней. Способ обеспечивает выраженную коррекцию бактериального гнойного менингита, что подтверждается низкой летальностью, уменьшением степени неврологического дефицита, более быстрым восстановлением поведенческой активности, низкими показателями окислительного стресса. 6 табл., 1 пр. Подробнее
Дата
2019-12-18
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Белгородский государственный национальный исследовательский университет"" "
Авторы
Симакина Екатерина Александровна , Покровский Михаил Владимирович , Агаркова Алина Анатольевна , Скачилова София Яковлевна , Садчикова Наталья Петровна
Способ определения сроков проведения литотрипсии после разрешения обструкции при мочекаменной болезни / RU 02723245 C1 20200609/
Открыть
Описание
Изобретение относится к медицине, а именно к урологии, и может быть использовано для определения сроков проведения литотрипсии после разрешения обструкции при мочекаменной болезни. Способ включает взятие пробы мочи из пораженной почки, определение в ней методом твердофазного иммуноферментного анализа концентраций интрлейкина-8 (IL-8) и креатинина, при этом взятие пробы мочи осуществляют на 21-е сутки после выполнения первого этапа хирургического лечения – чрескожной нефростомии, в которой определяют дополнительно концентрацию моноцитарного хемотаксического фактора-1 (MCP-1), проводят перерасчет на медианы референсных значений суммы концентраций IL-8 и MCP-1 с вычислением коэффициента К1, а также отдельно концентрации креатинина с вычислением коэффициента К2, определяют показатель купирования патологических процессов в почке К, равный отношению К1 и К2, при К>1,85 пролонгируют сроки выполнения второго этапа хирургического лечения – литотрипсии на 7 суток с повторным еженедельным определением показателя К, при К≤1,85 – выполняют литотрипсию. Технический результат заключается в обеспечении рациональности принятия врачебного решения о выборе сроков проведения литотрипсии после разрешения обструкции при мочекаменной болезни путем повышения достоверности определения купирования патологических процессов в почке и точности оценки восстановления нарушенных почечных функций. 4 пр. Подробнее
Дата
2019-12-16
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Саратовский государственный медицинский университет имени В.И. Разумовского"" Министерства здравоохранения Российской Федерации "
Авторы
Попков Владимир Михайлович , Хотько Дмитрий Николаевич , Хотько Анастасия Игоревна , Россоловский Антон Николаевич , Тарасенко Артем Игоревич
Красноизлучающий термически стабильный фотолюминофор Ba3Bi2(BO3)4:Eu3+ для чипов светодиодов / RU 02722343 C1 20200529/
Открыть
Описание
Изобретение относится к области производства источников излучения и касается красноизлучающего термически стабильного фотолюминофора Ba3Bi2(ВО3)4 для чипов светодиодов. Фотолюминофор Ba3Bi2(ВО3)4 допирован ионами Eu3+ и принадлежит к семейству M3Ln2(ВО3)4, где М=Ва, а лантаноиды (Ln) замещены трехвалентным висмутом. При этом катионы Ва2+ и Bi3+ разупорядоченно распределены по трем кристаллографически неэквивалентным позициям кристаллической структуры Ba3Bi2(ВО3)4. Технический результат заключается в увеличении оптимальной концентрации ионов допантов и исключения необходимости использования редкоземельных ионов в кристаллической структуре матрицы фотолюминофора. 2 з.п. ф-лы, 6 ил. Подробнее
Дата
2019-12-11
Патентообладатели
"Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук , Федеральное государственное бюджетное образовательное учреждение высшего образования ""Санкт-Петербургский государственный университет"" "
Авторы
Бубнова Римма Сергеевна , Шаблинский Андрей Павлович , Колесников Илья Евгеньевич , Галафутник Лидия Георгиевна , Поволоцкий Алексей Валерьевич , Филатов Станислав Константинович
Способ получения этилена из легковозобновляемого непродовольственного растительного сырья / RU 02718762 C1 20200414/
Открыть
Описание
Изобретение относится к способу получения этилена из легковозобновляемого растительного сырья, не имеющего продовольственной ценности. Предложен способ получения этилена из легковозобновляемого растительного сырья непродовольственного назначения, который включает измельчение сырья, предварительную химическую обработку 3-6%-ным раствором азотной кислоты при 90-95°С и атмосферном давлении в течение 3-6 ч, предварительное осахаривание осуществляют в течение 18-24 ч, совмещенный процесс осахаривания и сбраживания, в результате которого получают бражку, которую подвергают дистилляции и получают этанол концентрацией 90-96 мас. %, который содержит примеси в расчете на безводный этанол С3 спиртов не более 7 г/л, ионов натрия не более 0,01 мг⋅экв/л, полученный продукт - этанол направляют в каталитический реактор, где осуществляют его дегидратацию с получением реакционного газа, содержащего этилен, остаточный этанол и пары воды, из которого выделяют газовую фазу этилена, а полученную после реактора дегидратации этанола жидкую фазу, содержащую воду с растворенным в ней остаточным этанолом, смешивают с потоком бражки и направляют на дистилляцию, а отход спиртового производства – барду - направляют на сжигание и генерацию тепла, с последующим его использованием в эндотермическом процессе дегидратации этанола в этилен. Технический результат - получение по экологически чистой и экономически привлекательной технологии высоковостребованного продукта - этилена. 3 з.п. ф-лы, 1 ил., 16 пр. Подробнее
Дата
2019-12-11
Патентообладатели
"Федеральное государственное бюджетное учреждение науки ""Федеральный исследовательский центр ""Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук"" , Федеральное государственное бюджетное учреждение науки Институт проблем химико-энергетических технологий Сибирского отделения Российской академии наук "
Авторы
Овчинникова Елена Викторовна , Чумаченко Виктор Анатольевич , Банзаракцаева Сардана Пурбуевна , Сурмина Мария Александровна , Байбакова Ольга Владимировна , Скиба Екатерина Анатольевна , Сакович Геннадий Викторович , Будаева Вера Владимировна
Способ обеспечения температурной стабильности параметров молекулярно-электронного преобразователя в области высоких частот / RU 02724303 C1 20200622/
Открыть
Описание
Изобретение относится к измерительной технике, в частности к способу обеспечения температурной стабильности параметров молекулярно-электронных преобразователей, используемых в линейных и угловых акселерометрах. Это изобретение может найти применение в сейсмодатчиках, датчиках для стабилизации движущихся объектов и систем инерциальной навигации, акселерометрах и гидрофонах высокой стабильности и точности. В предлагаемом изобретении задача решена за счет того, что фоновый ток, протекающий через катоды преобразующего элемента, управляется специально разработанной электронной цепью в зависимости от температуры окружающей среды. Для этого в рабочей жидкости преобразователя на расстоянии от 2 до 50 мм от анодов устанавливают дополнительные электроды, находящиеся при потенциале на 100-500 мВ выше потенциала катодов, а через аноды пропускается ток, величина которого зависит от температуры по определенному закону. Действие тока, проходящего через аноды, состоит в управляемом температурой изменении анодной концентрации, которая повышается при увеличении тока и уменьшается в обратном случае. Технический результат - обеспечение точности измерения молекулярно-электронными преобразователями угловых и линейных движений и акустических сигналов в широком температурном диапазоне. 11 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-12-10
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Московский физико-технический институт "" "
Авторы
Агафонов Вадим Михайлович , Егоров Егор Владимирович , Егоров Иван Владимирович
Способ термохимической обработки нефтяного пласта / RU 02721200 C1 20200518/
Открыть
Описание
Изобретение относится к нефтедобывающей промышленности, в частности к способам термохимической обработки нефтяного пласта. Способ термохимической обработки нефтяного пласта включает одновременную или последовательную закачку двух водных растворов, представляющих собой термохимический состав, в объемном соотношении 1:1. Первый водный раствор содержит компоненты, мас. %: нитрат аммония - 30-40, сульфаминовая кислота - 8-12, гидрокарбонат аммония - 5-10, вода пресная - остальное, второй - нитрит натрия с концентрацией 40-45 мас. %. После закачки водных растворов осуществляют последовательную закачку кислотного состава, содержащего ингибированную соляную кислоту с концентрацией 60 мас. %, сульфаминовую кислоту - 2 мас. %, уксуснокислый аммоний - 3 мас. %, неонол АФ9-12 - 0,15 мас. %, воду пресную - остальное, и высоковязкого полимерного состава. Высоковязкий полимерный состав включает компоненты, мас. %: полиакриламид - 0,1-0,6, 10 %-ный раствор хромокалиевых квасцов - 0,1-0,6, воду пресную - остальное. Термохимический состав, кислотный состав и высоковязкий полимерный состав закачивают в объемном соотношении 1:(0,5-2):(0,5-1), продавливают их в пласт водой, останавливают скважину на технологическую выдержку продолжительностью 4 ч и возобновляют заводнение. Для высокоприёмистых скважин до закачки термохимического состава осуществляют закачку высоковязкого полимерного состава при их объемном соотношении 1:(1-3). За счет увеличения охвата пласта воздействием и подключения низкопроницаемых нефтенасыщенных пропластков увеличивается нефтеотдача, снижается обводненность добываемой продукции. 1 з.п. ф-лы, 3 табл. Подробнее
Дата
2019-12-09
Патентообладатели
Публичное акционерное общество "Татнефть" имени В.Д. Шашина
Авторы
Ганеева Зильфира Мунаваровна , Ризванов Рафгат Зиннатович , Хисаметдинов Марат Ракипович , Береговой Антон Николаевич , Федоров Алексей Владиславович , Нуриев Динис Вильсурович
Способ и автоматическая система калибровки газоанализаторов с применением источников микропотока / RU 02722475 C1 20200601/
Открыть
Описание
Изобретение относится к измерительной технике, в частности к газоаналитическим измерениям, и может быть использовано для мониторинга состояния и состава атмосферы. Способ автоматической калибровки газоанализаторов включает подачу смеси с нулевым содержанием SO2 и NO2, калибровочной смеси известной концентрации, получаемой при помощи источников микропотока, на газоанализатор поочередно с пробами атмосферного воздуха в автоматическом режиме с использованием программно-управляемых клапанов, при этом подача нулевой и калибровочной смеси, а также проб атмосферного воздуха, с двух высотных уровней, осуществляется при помощи нагнетающих насосов, при этом объем подаваемой воздушной смеси на вход газоанализаторов превышает значение расхода самих газоанализаторов. Техническим результатом является разработка автоматической системы и способа калибровки газоанализаторов, позволяющий с высокой точностью осуществлять измерение концентрации в атмосферном воздухе, таких газов как: диоксид серы (SO2) и оксид азота (NO2). 2 н. и 5 з.п. ф-лы, 3 ил., 1 табл. Подробнее
Дата
2019-12-06
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук
Авторы
Белан Борис Денисович , Аршинов Михаил Юрьевич , Давыдов Денис Константинович , Козлов Артем Владимирович , Пестунов Дмитрий Александрович , Фофонов Александр Владиславович , Скляднева Татьяна Константиновна
Способ прогнозирования исходов операций коронарного шунтирования / RU 02719914 C1 20200423/
Открыть
Описание
Изобретение относится к медицине, а именно к кардиохирургии, и может быть использовано для прогнозирования исходов операций коронарного шунтирования (КШ). Интраоперационно сразу после завершения наложения шунтов определяют концентрацию активной миелопероксидазы в плазме крови. Рассчитывают показатель Р по формуле P=e-4,8498+0,0046×МРО×100%, где МРО - концентрация активной миелопероксидазы, нг/мл; е - основание натурального логарифма. При значении Р более 1,2% прогнозируют неблагоприятный исход операции КШ. Способ обеспечивает возможность интраоперационного прогнозирования исходов КШ за счет интраоперационного определения концентрации активной МРО, являющейся маркером ишемически-реперфузионного изменения миокарда при операциях КШ, что позволяет своевременно корректировать хирургическую тактику лечения раньше, чем проявятся очевидные признаки синдрома малого сердечного выброса. 2 ил., 3 пр. Подробнее
Дата
2019-12-06
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова"" Министерства здравоохранения Российской Федерации "
Авторы
Хубулава Геннадий Григорьевич , Горбунов Николай Петрович , Буненков Николай Сергеевич , Комок Владимир Владимирович , Белый Сергей Алексеевич , Соколов Алексей Викторович , Костевич Валерия Александровна , Васильев Вадим Борисович , Пизин Виктор Михайлович , Яшин Сергей Михайлович , Немков Александр Сергеевич
Чехол для мобильного телефона / RU 02723303 C1 20200609/
Открыть
Описание
Изобретение относится к области аксессуаров для электронных устройств, а именно к чехлам, предназначенным для размещения и хранения мобильных телефонов. Техническим результатом является обеспечение повышения концентрации звуковых волн от динамика устройства для улучшения качества подачи звука мобильного телефона. Для этого чехол для мобильного телефона содержит корпус из полимерного материала для размещения в нем телефона. Причем в корпусе выполнена выдвижная панель из прочного и плотного полиэстера - Tritan, с плоскостями, расположенными под углом к плоскости устройства, отражающими звук к слуховым рецепторам человека, а на боковых стенках панели расположены полозья и фиксаторы, для обеспечения возможности оптимального перемещения панели в корпусе, панель исполнена из прочного и плотного полиэстера - Tritan. 1 ил. Подробнее
Дата
2019-12-05
Патентообладатели
Галайко Владимир Васильевич , Ельяшова Анастасия Павловна
Авторы
Галайко Владимир Васильевич , Ельяшова Анастасия Павловна
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ НИКЕЛЯ И НЕМЕТАЛЛИЧЕСКОГО ПОРОШКА / RU 02718825 C1 20200414/
Открыть
Описание
Изобретение относится к порошковой металлургии, в частности к способам изготовления композиционных материалов на основе никеля методом химического осаждения. Может применяться в авиационной промышленности для нанесения покрытий методом плазменного напыления. Неметаллический порошок направляют на прокатное устройство для получения полос, которые помещают в аттритор для получения гранул округлой формы. Неметаллический порошок с гранулами округлой формы смешивают с активирующим раствором, состоящим из щелочи с концентрацией 100-300 г/л и поверхностно-активного вещества с концентрацией 0,5-1,5 г/л. Химическое осаждение никеля проводят в нагретом реакционном растворе, содержащем соль никеля и восстановитель гипофосфит натрия. Полученный композиционный материал подвергают термической обработке при температуре 500-900°С в течение 40-180 мин. Обеспечивается равномерное покрытие гранул, повышение насыпной плотности композиционного материала и повышение равномерности получаемого покрытия. 4 ил., 1 пр. Подробнее
Дата
2019-12-04
Патентообладатели
Соболева Елена Савватьевна
Авторы
Соболева Елена Савватьевна
СПОСОБ ПОЛУЧЕНИЯ ЦИКЛОГЕКСАНОНА И ЦИКЛОГЕКСАНОЛА / RU 02723547 C1 20200616/
Открыть
Описание
Изобретение относится к способу получения циклогексанона и циклогексанола, которые являются полупродуктами в синтезе капролактама. Способ заключается в жидкофазном окислении циклогексана при температуре 130-160°С и давлении 9-15 атм в присутствии в качестве катализатора раствора нафтената кобальта с концентрацией 0,1-0,006 мас.% в расчете на кобальт в четырехсекционном барботажном реакторе с вводом катализатора в первую по ходу движения технологического потока секцию барботажного реактора. При этом в качестве катализатора используют раствор нафтената кобальта в циклогексаноне и/или циклогексаноле, а процесс проводят при дополнительном введении бромида натрия во вторую, третью и четвертую секции реактора при мольном отношении [бромид натрия]:[нафтенат кобальта], равном 1:5-1:10. Предлагаемый способ позволяет увеличить селективность процесса по циклогексанону и циклогексанолу до 96,5%. 1 табл., 9 пр. Подробнее
Дата
2019-12-04
Патентообладатели
"Публичное акционерное общество ""КуйбышевАзот"" "
Авторы
Ардамаков Сергей Витальевич , Герасименко Александр Викторович
Способ выделения водорастворимых веществ из лопуха большого / RU 02724467 C1 20200623/
Открыть
Описание
Изобретение относится к пищевой промышленности, а именно к выделению водорастворимых веществ из лопуха большого. Способ предусматривает экстрагирование компонентов из измельченных корнеплодов в колбе с обратным холодильником с последующим фильтрованием и упариванием фильтрата на водяной бане. Экстрагирование осуществляют дистиллированной водой при нагревании в течение 20 минут при соотношении сырья к экстрагенту 1:3. Полученный экстракт охлаждают до комнатной температуры, фильтруют на воронке Бюхнера под давлением с промыванием твердого остатка горячей дистиллированной водой температурой 95 °С и затем упаривают до концентрации сухих веществ 50-55 %. Изобретение позволяет выделить водорастворимые вещества из корнеплодов лопуха большого, в частности инулин, при сокращении длительности процесса и увеличении выхода целевого продукта. 1 табл. Подробнее
Дата
2019-12-03
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Кузбасская государственная сельскохозяйственная академия"" "
Авторы
Колбина Анастасия Юрьевна , Курбанова Марина Геннадьевна