Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
Способ изготовления устройства поверхностной аксиальной нанофотоники / RU 02723979 C1 20200618/
Открыть
Описание
Изобретение относится к области нанооптических технологий. Способ изготовления устройства поверхностной аксиальной нанофотоники (SNAP) реализуется путем создания заданного профиля эффективного радиуса волокна по его оси последовательным воздействием сфокусированным излучением на определенные участки волокна при его перемещении. При этом воздействие осуществляют при перемещении волокна в непрерывном режиме при температуре волокна ниже температуры трансформации не менее чем на 100 градусов с одновременным непрерывным контролем произведенной модификации эффективного радиуса. Технический результат заключается в обеспечении возможности уменьшения количества производственных и контрольных операций при изготовлении устройства. 7 з.п. ф-лы, 5 ил. Подробнее
Дата
2019-12-30
Патентообладатели
"федеральное государственное автономное образовательное учреждение высшего образования ""Новосибирский национальный исследовательский государственный университет"" "
Авторы
Крисанов Дмитрий Владиславович , Ватник Илья Дмитриевич , Хорев Сергей Владимирович , Чуркин Дмитрий Владимирович
Скважинная насосная установка для добычи битуминозной нефти / RU 02724701 C1 20200625/
Открыть
Описание
Изобретение относится нефтегазодобывающей промышленности, в частности к устройствам с устьевым приводом для добычи битуминозной нефти из горизонтальных скважин. Скважинная насосная установка для добычи битуминозной нефти содержит колонну насосно-компрессорных труб с насосом, состоящим из корпуса и ротора с выходным валом больше длины ротора. Штанги, спущенные в ствол скважины для добычи нефти. Наземный привод для вращения штанг, хвостовик с фильтром на приеме насоса, спущенного в горизонтальный участок ствола скважины. Для вращения выходного вала с ротором шлицевой вал соединен с колоколом, оснащенным внутренними шлицами, с возможностью ограниченного продольного перемещения и образованием телескопической пары. Телескопическая пара шлицевым валом или колоколом жестко соединена с удлиненным выходным валом, колокол снабжен центратором, а выходной вал - центратором с упором, ограничивающим вход выходного вала в колокол. Длина шлицевого вала и колокола выбраны такими, чтобы компенсировать удлинение или сжатие штанг с запасом при любых возможных изменениях температуры внутри ствола скважины. Шлицевой вал на торце снабжен ограничителем, предотвращающим выход его из колокола. Достигается технический результат - увеличение ресурса работы между ремонтами и возможность исключения постоянного контроля за работой насосной установки. 2 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-12-18
Патентообладатели
Публичное акционерное общество "Татнефть" имени В.Д. Шашина
Авторы
Амерханов Марат Инкилапович , Латфуллин Рустэм Русланович , Нуруллин Ильнар Загфярович
Способ хирургического лечения артроза атланто-дентального сустава / RU 02722814 C1 20200604/
Открыть
Описание
Изобретение относится к медицине, а именно к травматологии-ортопедии и нейрохирургии, и может быть использовано для хирургического лечения артроза атланто-дентального сустава. Способ включает право- или левосторонний боковой шейный доступ, проведение пункции пораженных шейных межпозвонковых дисков под рентген-контролем. Пункцию проводят в области медиального края правой кивательной мышцы на уровне передней поверхности тела С3 позвонка. После чего с помощью пункционной иглы осуществляют гидропрепаровку превертебральной фасции до атланто-дентального сустава по средней линии. Затем через пункционную канюлю вводят в полость атланто-дентального сустава электрод диаметром 1,1 мм холодоплазменного аппарата. Осуществляют обработку передней, задней и боковых поверхностей атланто-дентального сустава плазмой температурой, изменяющейся от 40°С до 50°С в процессе воздействия, по 5-10 сек на каждую область. Способ обеспечивает снижение внутрисуставного давления, снижает время реабилитационного периода, способствует сокращению сроков нетрудоспособности за счет малой инвазивности. 9 ил., 2 пр. Подробнее
Дата
2019-12-11
Патентообладатели
"Государственное бюджетное учреждение здравоохранения Московской области ""Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского"" "
Авторы
Киселев Анатолий Михайлович , Джинджихадзе Реваз Семенович , Деркач Мария Игоревна
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НАЧАЛА ИЗМЕНЕНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ПРЕДЕЛЬНОЙ ТЕМПЕРАТУРЫ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ / RU 02722119 C1 20200526/
Открыть
Описание
Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение времени, через равные промежутки времени пробу окисленного смазочного материала взвешивают, часть пробы фотометрируют и определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности. По данным показателям термоокислительной стабильности вычисляют количество тепловой энергии, поглощенной продуктами окисления, продуктами испарения, и суммарную поглощенную тепловую энергию при термостатировании смазочного материала, которое определяют произведением значения температуры, умноженной на время испытания и значение соответствующего показателя термоокислительной стабильности. Вычисляют десятичные логарифмы поглощенной тепловой энергии для каждого показателя и строят графические зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от десятичного логарифма времени и температуры испытания. По этим зависимостям определяют значения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при заданном десятичном логарифме времени испытания и температурах испытания. Также определяют значения десятичного логарифма времени испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре. Кроме того, определяют значения десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре. На основании полученных данных для каждого показателя строят дополнительные графические зависимости. При этом по зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания определяют температуру начала изменения десятичного логарифма поглощенной тепловой энергии при заданном десятичном логарифме времени испытания. По зависимости десятичного логарифма времени испытания от температуры испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности определяют предельную температуру работоспособности исследуемого смазочного материала, а по зависимости десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания прогнозируют начало изменения десятичного логарифма поглощенной тепловой энергии для других температур. Технический результат - повышение информативности контроля смазочных материалов для сравнения их качества и выбора. 3 ил., 1 табл. Подробнее
Дата
2019-12-04
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Сибирский федеральный университет"" "
Авторы
Ковальский Болеслав Иванович , Лысянникова Наталья Николаевна
Способ мониторинга выработанного пространства / RU 02723106 C1 20200608/
Открыть
Описание
Изобретение относится к горной промышленности, в частности к технологии и способу контроля за содержанием опасных газов и очагов возгорания в выработанном пространстве угольных шахт, и может быть использовано для предотвращения аварийных ситуаций и катастроф в горных выработках. Заявлен способ мониторинга выработанного пространства, который заключается в том, что в свободном доступном пространстве горной выработки, удаленном от очистного забоя, устанавливают приемное устройство 2, содержащее дешифратор и устройство оповещения. В процессе выемки полезного ископаемого механизированным очистным комплексом 13 по меньшей мере в одну проходку вдоль очистного забоя на почве выработанного пространства между штреками последовательно устанавливают зонды 1, каждый из которых включает установленные внутри корпуса по меньшей мере один датчик газа и/или по меньшей мере один датчик температуры, контроллер и источник питания. Последовательно по мере установки зондов 1 и по мере перемещения очистного забоя соединяют каждый зонд 1 с приемным устройством 2 с помощью проводной линии 3 связи. При завале горной выработки с помощью по меньшей мере одного датчика газа и/или по меньшей мере одного датчика температуры каждого заваленного зонда 1 осуществляют измерение соответственно концентрации газа и/или температуры в месте завала каждого зонда 1 и от каждого заваленного зонда 1 периодически отправляют на приемное устройство 2 сигнал, содержащий информацию о концентрации газа и/или о температуре в зоне расположения соответствующего заваленного зонда 1, при этом с помощью устройства 2 оповещения приемного устройства информируют о наличии опасной концентрации газа и/или о наличии или отсутствии возгорания в зоне расположения соответствующего заваленного зонда 1. Технический результат - обеспечение возможности своевременного информирования о наличии опасных концентраций газов в выработанном пространстве и/или о наличии/отсутствии очагов самовозгорания в выработанном пространстве, позволяющее объективно оценить опасность/безопасность ведения добычных работ и своевременно принять меры по предотвращению аварийных ситуаций. 2 з.п. ф-лы, 4 ил. Подробнее
Дата
2019-12-02
Патентообладатели
Никишичев Дмитрий Борисович
Авторы
Никишичев Дмитрий Борисович
Способ разработки залежи высоковязкой нефти / RU 02724718 C1 20200625/
Открыть
Описание
Изобретение относится к нефтедобывающей промышленности. Технический результат - обеспечение равномерного прогрева залежи, экономия энергии, затрачиваемой на прогрев залежи, увеличение добычи высоковязкой нефти или битума на месторождении. В способе разработки залежи высоковязкой нефти нагнетательные скважины строят горизонтальными и располагают над горизонтальными добывающими скважинами на расстоянии, исключающем прорыв теплоносителя. Закачку рабочего агента ведут в добывающие скважины через одну на начальном этапе с учетом давления в других добывающих скважинах и температуры в парных нагнетательных скважинах. При увеличении давления в близлежащих добывающих скважинах на 0,25 МПа и более и температуры в нагнетательной скважине, расположенной над соответствующей добывающей скважиной, закачку в эту добывающую скважину прекращают на период перераспределения энергии по пласту. После снижения давления в близлежащих добывающих скважинах до начального пластового нагнетание пара в добывающей скважине возобновляют. После повышения температуры в соответствующей нагнетательной скважине на 10 °С и более ее переводят под нагнетание пара, а добывающую скважину – на отбор продукции. При этом близлежащие добывающие скважины переводят под нагнетание пара, проводя контроль в близлежащих к ним добывающих и нагнетательных скважинах, кроме переведенной пары скважин на нагнетание и отбор, аналогично описанному выше до полного введения всех нагнетательных скважин под нагнетание пара. 1 ил., 1 пр. Подробнее
Дата
2019-11-25
Патентообладатели
Публичное акционерное общество "Татнефть" имени В.Д. Шашина
Авторы
Амерханов Марат Инкилапович , Ахметшин Наиль Мунирович , Хамадеев Дамир Гумерович
СПОСОБ АВТОМАТИЧЕСКОГО РАСПРЕДЕЛЕНИЯ НАГРУЗКИ МЕЖДУ ТЕХНОЛОГИЧЕСКИМИ ЛИНИЯМИ ОСУШКИ ГАЗА НА УСТАНОВКАХ КОМПЛЕКСНОЙ ПОДГОТОВКИ ГАЗА, РАСПОЛОЖЕННЫХ НА СЕВЕРЕ РФ / RU 02724756 C1 20200625/
Открыть
Описание
Изобретение относится к области добычи, сбора и подготовки природного газа и газового конденсата к дальнему транспорту, в частности к ведению процесса осушки газа на установках комплексной подготовки газа (УКПГ) сеноманских залежей нефтегазоконденсатных месторождений (НГКМ). Способ автоматического распределения нагрузки между технологическими линиями осушки газа - ТЛОГ на установках комплексной подготовки газа - УКПГ, расположенных на Севере РФ, включает автоматизированную систему управления - АСУ ТП, которая управляет производительностью цеха осушки газа - ЦОГ в соответствии с вводимым диспетчерской службой заданием для УКПГ, снижая или повышая с заданным шагом квантования производительность лишь одной, заранее выбранной i-й ТЛОГ на величину, обеспечивающую вывод УКПГ на плановый расход газа Fзд, последовательно открывая или закрывая клапан-регулятор - КР i-й ТЛОГ. После планово-предупредительного ремонта и/или обслуживания ЦОГ осуществляют настройку индивидуальных коэффициентов ПИД-регуляторов всех ТЛОГ в зависимости от состояния их оборудования, с учетом результатов газодинамических исследований скважин промысла и данных лабораторных исследований параметров добываемого газа. По команде диспетчерской службы запускают УКПГ с необходимым числом ТЛОГ в эксплуатацию, подавая на вход задания SP каждого ПИД-регулятора включенных ТЛОГ единый сигнал планового задания подготовки газа по УКПГ. В результате обработки этих сигналов каждый из ПИД-регуляторов формирует сигнал управления, поступающий на клапан-регулятор КР контролируемой им ТЛОГ. Одновременно с этим АСУ ТП осуществляет индивидуальный контроль фактической температуры точки росы осушенного газа на выходе каждой ТЛОГ, сравнивая ее с требуемым нормативами заданием. Способ позволяет в автоматическом режиме оперативно с учетом состояния ТЛОГ распределять нагрузку между ними, обеспечивая тем самым заданную степень осушки газа при минимальных энергетических и материальных затратах и соблюдении всех ограничений на технологические параметры процесса. 3 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-11-18
Патентообладатели
"Общество с ограниченной ответственностью ""Газпром добыча Ямбург"" "
Авторы
Ефимов Андрей Николаевич , Агеев Алексей Леонидович , Арно Олег Борисович , Арабский Анатолий Кузьмич , Смердин Илья Валериевич , Гункин Сергей Иванович , Турбин Александр Александрович , Талыбов Этибар Гурбанали оглы , Пономарев Владислав Леонидович , Дегтярев Сергей Петрович , Партилов Михаил Михайлович , Дяченко Илья Александрович
Устройство для дистанционного контроля и управления процессом шмелеопыления в теплицах, система и способ дистанционного контроля и управления процессом шмелеопыления в теплицах / RU 02724542 C1 20200623/
Открыть
Описание
Группа изобретений относится к сельскому хозяйству, в частности к автоматизированным системам мониторинга и контроля состояния шмелиных семей. Устройство для дистанционного контроля и управления процессом шмелеопыления в теплицах представляет собой теплоизолированный короб с полками внутри для размещения по крайней мере на части из них или на каждой из них шмелиного улья. На лицевой стороне короба напротив мест размещения шмелиных ульев выполнены отверстия для влета/вылета шмелей, оснащенные узлом их закрытия/открытия с дистанционно управляемым сервоприводом. На боковой стенке короба размещена дверца для доступа к полкам, а в верхней части одной из стенок выполнены отверстия для выхода вентилируемого воздуха, оборудованные узлом открытия/закрытия с дистанционно управляемым сервоприводом. В нижней части короба организован заборный канал с нагнетательным вентилятором для подачи воздуха внутрь короба из-под дна короба. Внутри короба размещен контроллер на процессорной основе, выполненный с блоком передачи сигналов в режиме удаленной связи и связанный с размещенными внутри короба датчиками температуры, влажности воздуха и присутствия ульев и с помещенными внутри заборного канала датчиками температуры, влажности и содержания СО2 в воздухе снаружи короба, датчиками учета количества влетов и вылетов шмелей, датчиком положения дверцы и с антенной для передачи данных посредством сотовой связи на компьютеризированное средство оператора. Достигаемый при этом технический результат заключается в повышении летной/опылительной активности и продолжительности работы шмелиных семей, размещаемых в теплицах. 3 н.п. ф-лы, 11 ил. Подробнее
Дата
2019-11-14
Патентообладатели
Шишкин Павел Валентинович , Шишкин Семен Павлович
Авторы
Шишкин Павел Валентинович , Шишкин Семен Павлович
Способ получения нитрата олова (IV) путем окисления нитрата олова (II) / RU 02717810 C1 20200325/
Открыть
Описание
Изобретение может быть использовано при проведении аналитического контроля и научных исследований. Для получения нитрата олова (IV) Sn(NO3)4 окисляют нитрат олова (II) Sn(NO3)2 в присутствии азотной кислоты. В качестве окислителя используют пероксид водорода с концентрацией в водном растворе 8-15%, который дозируют с избытком в отношении оловосодержащего восстановителя - нитрата олова (II). Азотную кислоту берут в виде 54%-ного водного раствора в мольном соотношении с восстановителем (2,05-2,40):1. Процесс проводят при комнатной температуре в бисерной мельнице со стеклянным бисером в качестве перетирающего агента в присутствии уайт-спирита как базового компонента объемной фазы. Дозировку реагентов рассчитывают на 0,2-0,5 моль/кг продукта в конечной реакционной смеси и проводят в следующей последовательности: стеклянный бисер, пероксид водорода, азотная кислота. Затем вводят уайт-спирит и нитрат олова (II), включают механическое перемешивание. После практически полного расходования нитрата олова (II) в реакционной смеси процесс прекращают, отделяют стеклянный бисер. Реакционную смесь фильтруют, осадок на фильтре промывают уайт-спиритом, снимают с фильтра и сушат или направляют на дополнительную очистку. Изобретение позволяет обеспечить практически полное расходование исходного оловосодержащего реагента с высокой избирательностью по целевому продукту. 1 з.п. ф-лы, 1 ил., 1 табл., 9 пр. Подробнее
Дата
2019-11-13
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Юго-Западный государственный университет"" "
Авторы
Иванов Анатолий Михайлович , Пожидаева Светлана Дмитриевна , Родионова Мария Сергеевна
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАГОТОВОК ПОЛОЖИТЕЛЬНОГО ЭЛЕКТРОДА ЦИЛИНДРИЧЕСКИХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКОВ / RU 02716277 C1 20200311/
Открыть
Описание
Изобретение относится к области электротехники, а именно к способу изготовления положительных электродов первичных химических источников тока. Способ изготовления заготовок положительного электрода цилиндрических химических источников токов включает в себя подготовку брикетов активной массы из смеси двуокиси марганца, углерода технического и фторопластовой суспензии, выдержку брикетов активной массы в бензине-растворителе, прокатку брикетов в ленту на формовочных валках при подаче потока сжатого воздуха, вырубку, выдержку контрольного образца в электрошкафу в пределах 5-10 минут при температуре 100-140°С, а также взвешивание массы, измерение ширины и толщины ленты активной массы контрольного образца, сравнение с заданными параметрами, намотку ленты активной массы на шпулю для формирования бобины с лентой активной массы, выдержку бобины в вытяжном шкафу не менее 18 часов, формовку бобины электродной ленты двух лент активной массы и металлической ленты между ними на формовочных валках, накатку электродной ленты, контроль толщины заготовок, резку заготовок электрода, контроль толщины заготовок, сушку заготовок электрода при температуре 110-150°С, термообработку заготовок при температуре 200-240°С, вырубку заготовок электрода. Повышение плотности активной массы положительного электрода при сохранении заданных электрических и механических характеристик является техническим результатом предложенного способа. Подробнее
Дата
2019-11-05
Патентообладатели
"Акционерное общество ""Литий-Элемент"" "
Авторы
Папикян Роман Петросович , Новокрещёнов Леонид Александрович , Гришин Сергей Владимирович , Шаронов Александр Петрович , Земсков Игорь Юрьевич
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ПРОТИВОИЗНОСНЫХ ПРИСАДОК НА ОСНОВЕ ЖИРНЫХ КИСЛОТ В ДИЗЕЛЬНЫХ ТОПЛИВАХ / RU 02723974 C1 20200618/
Открыть
Описание
Изобретение относится к области контроля качества дизельных топлив, преимущественно для определения противоизносных присадок на основе жирных кислот. Способ определения количества противоизносной присадки на основе жирных кислот в дизельных топливах включает отбор пробы, ИК-спектрометрирование и последующее определение концентрации присадки по градуировочному графику, построенному в координатах высота пика на волновом числе 1710 см-1 - концентрация присадки, перед ИК-спектрометрированием хроматографическую колонку заполняют 1 г сорбента, в качестве которого используют силикагель, с размером частиц 40-100 мкм, диаметром пор 60 , смачивают гексаном и пропускают 50 см3 пробы топлива, создавая разрежение 13-40 мбар, после чего дополнительно последовательно пропускают через сорбент 2 см3 гексана, затем 10 см3 этанола, собирая экстракты в разные емкости, экстракт после пропускания этанола выдерживают при температуре 50-60°С и вакууме 10-15 мбар в течение 5 мин, по окончании которых доводят до объема 5 см3 тетрахлорметаном и полученный раствор подвергают ИК-спектрометрированию. Техническим результатом изобретения является расширение номенклатуры способов определения присадок в дизельных топливах. 1 ил., 10 табл. Подробнее
Дата
2019-10-30
Патентообладатели
"Федеральное автономное учреждение ""25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации"" "
Авторы
Шарин Евгений Алексеевич , Чернышева Анна Владимировна , Щербаков Павел Юрьевич
Способ измерения теплового сопротивления переход-корпус силовых полупроводниковых приборов / RU 02724148 C1 20200622/
Открыть
Описание
Изобретение относится к контрольно-измерительной технике, в частности к технике измерения тепловых параметров силовых полупроводниковых приборов (СПП) в корпусном исполнении. Технический результат - обеспечение неразрушающего контроля теплового сопротивления переход- корпус СПП, сокращение времени измерения и в конечном итоге повышение выхода годности изделий в технологическом цикле их серийного производства. Сущность: полупроводниковый кристалл нагревают путем пропускания через него постоянного тока заданной амплитуды I. В процессе нагрева измеряют величину I и падение напряжения U на испытуемом приборе. Величину греющей мощности Р вычисляют по выражению Р=IU. По истечении времени t, равного утроенному значению тепловой постоянной конструкции прибора t=3τT, источник греющего тока отключают. Одновременно подключают источник измерительного тока и измеряют величину термочувствительного параметра в момент отключения источника греющего тока, в качестве которого используют прямое падение напряжения на кристалле Unp1. По истечении времени t=3τT по окончании процесса естественного перераспределения накопленного полупроводниковым кристаллом тепла по структуре конструкции прибора, включая массивное тело основания корпуса прибора, производят повторное измерение величины термочувствительного параметра Unp2. По полученным значениям рассчитывают разность Unp1-Unp2 и определяют разность между температурами перехода и корпуса испытуемого прибора KT⋅(Unp1-Unp2)=TJ-TC, где KT - величина температурного коэффициента прямого напряжения. Величину теплового сопротивления переход-корпус Rthjc рассчитывают как отношение полученных значений TJ-TC и мощности Р. 8 ил. Подробнее
Дата
2019-10-28
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Ставропольский государственный аграрный университет"" "
Авторы
Ершов Андрей Борисович , Хорольский Владимир Яковлевич , Байрамалиев Султан Шарифидинович
Способ метаболической коррекции у пациентов с белково-энергетической недостаточностью (БЭН) / RU 02714315 C1 20200214/
Открыть
Описание
Изобретение относится к медицине, нутрициологии, диетологии, иммунологии, эндокринологии и может быть использовано у лиц трудоспособного возраста, имеющих сниженную массу тела (МТ) на фоне метаболических нарушений по разным причинам (соматические, нервные, психические болезни, онкология). Способ включает высокобелковую диету (ВБД), прием сбалансированных белковых смесей и пищевых добавок под контролем объективных показателей состояния организма: динамики значений индекса массы тела (ИМТ), биоимпедансного исследования состава тела, биохимических, иммунологических показателей крови и показателей кишечного микробиоценоза. В качестве основы ВБД используют нежирную телятину, курицу, индейку, молочные продукты и яйца. В основное блюдо и напитки добавляют 3-4 раза в день сухую композитную смесь Нутринор, начиная диету из расчета энергетической потребности 20 ккал/кг/сут. В случае сниженного ИМТ на 3 кг/м2 от нижней границы нормы вначале диету соблюдают, обеспечивая 50% суточной энергетической потребности пациента (СЭПП), до повышения ИМТ на 1 кг/м2 по сравнению с исходно сниженным до начала коррекции. Далее соблюдают ту же диету с приемом Нутринора, обеспечивая 75% СЭПП, до ИМТ=17 кг/м2. Далее соблюдают ту же диету с приемом Нутринора, обеспечивая 100% СЭПП, до ИМТ=18 кг/м2, после чего пациент переходит на естественное питание. При исходно сниженном ИМТ на 1-2 кг/м2 от нижней границы нормы в первые 3 дня коррекции обеспечивают 50% СЭПП ВБД с Нутринором, в следующие 3 дня обеспечивают 75% СЭПП. Далее продолжают ВБД с приемом Нутринора, обеспечивая 100% СЭПП, до значения ИМТ, составляющего нижнюю границу нормы - 18,5 кг/м2. По окончании диеты пациент переходит на естественное питание - общий вариант диеты (ОВД) с дополнительным приемом Нутринора, ежедневно разделяя его объем на 5 равных приемов пищи в день, добавляя его в состав блюд и/или напитков в сочетании с ферментами, выбранными из группы: Эрмитель, Креон, Мезим, Панкреатин, в дозе 15000-20000 ЕД на каждый основной прием пищи - завтрак, обед и ужин - до достижения значения ИМТ=19 кг/м2. В качестве пищевых добавок на протяжении всего курса коррекции используют Гепамин по 2 таб./д. во время еды и Стимбифид после приема пищи: в 1-й день - 2 таб. 1 р./день, во 2-й - 2 таб. 2 р./день, в 3-й - по 2 таб. 3 р./день, оставляя прием этой дозы Стимбифида и Гепамина не менее чем на один месяц после достижения ИМТ=18,5 кг/м2. Курс проводят на фоне стимуляции аппетита приемом газированной минеральной лечебно-столовой воды «Липецкий бювет» комнатной температуры за 15 мин до еды 3 раза в день по 150 мл, начиная со 100 мл один раз в день, воду пьют глотками, минимально возможными по объему для пациента. Об эффективности коррекции судят по динамике перечисленных показателей. Если БЭН вызвана нервной анорексией, дополнительно к упомянутым приемам коррекции проводят соответствующее состоянию пациента психотерапевтическое воздействие. Технический результат – достижение одновременной адекватной метаболической коррекции БЭН при отсутствии побочных эффектов полипрагмазии с нормализацией показателей обмена веществ, биоценоза кишечника, иммунного и электролитного статуса, адекватная нейроиммунно-эндокринная регуляция метаболизма с сохранением эффекта до 12 месяцев. 1 з.п. ф-лы, 1 пр., 5 табл. Подробнее
Дата
2019-10-23
Патентообладатели
"Федеральное государственное бюджетное учреждение ""Национальный медицинский исследовательский центр реабилитации и курортологии"" Министерства здравоохранения Российской Федерации "
Авторы
Фесюн Анатолий Дмитриевич , Сергеев Валерий Николаевич , Мусаева Ольга Михайловна , Петухов Александр Борисович , Барашков Глеб Николаевич , Никитин Михаил Владимирович , Чукина Ирина Михайловна , Датий Алексей Васильевич , Стражев Сергей Васильевич , Щербова Залина Ростиславовна , Филимонов Реонольд Минович , Филимонова Татьяна Реонольдовна , Парфенов Андрей Анатольевич
Способ разработки залежи сверхвязкой нефти / RU 02724729 C1 20200625/
Открыть
Описание
Изобретение относится к нефтедобывающей промышленности. Технический результат - ускоренный равномерный темп прогрева продуктивного пласта без прорыва теплоносителя. Способ разработки залежи сверхвязкой нефти включает строительство в пределах одного пласта залежи ряда параллельных горизонтальных скважин и отдельной скважины над параллельными скважинами, расположенной на примерно равном расчетном расстоянии от забоев параллельных скважин, исключающем прорыв теплоносителя, но позволяющем создать гидродинамическую связь со всеми скважинами - на расстоянии в плане 50±15 м до их забоев. Параллельно отдельной скважине над горизонтальными стволами параллельных скважин в сторону устья строят дополнительные нагнетательные скважины, располагаемые в ряд на расстоянии друг от друга, позволяющем равномерно прогревать пространство пласта над параллельными скважинами без прорыва теплоносителя друг в друга. Добывающие скважины оборудуют для постоянного контроля датчиками температуры по всей длине. При прогреве пласта закачку теплоносителя до образования гидродинамической связи ведут во все скважины через одну в соответствующем ряду, последовательно переключая при достижении хотя бы в одной из добывающих скважин температуры, близкой к температуре прорыва теплоносителя. После достижения гидродинамической связи закачку теплоносителя осуществляют через все нагнетательные скважины с периодическим отключением нагнетания в той скважине, в пересечении с которой хотя бы в одной из добывающих скважин температура повысится до близкой к температуре прорыва теплоносителя. Закачку возобновляют при снижении температуры в этом пересечении до допустимой, определяемой эмпирическим путем. 1 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-10-17
Патентообладатели
Публичное акционерное общество "Татнефть" имени В.Д. Шашина
Авторы
Емельянов Виталий Владимирович , Пашукевич Вячеслав Николаевич , Мухаметдинов Ильдар Мехаматнурович
СПОСОБ КОНТРОЛЯ ТЕМПЕРАТУРЫ КЛЕММНОГО СОЕДИНЕНИЯ / RU 02711086 C1 20200115/
Открыть
Описание
Изобретение относится к способам защиты электросети от короткого замыкания посредством регулирования температуры клеммных соединений и может быть использовано в промышленной и бытовой аппаратуре для предотвращения пожароопасных ситуаций. Техническим результатом изобретения является получение оперативной и достоверной информации о тепловом состоянии клеммных соединений электрической цепи за счет исключения электрической связи между термодатчиками и клеммным соединением. Изобретение представляет собой способ контроля температуры клеммного соединения, заключающийся в том, что устанавливают металлическое устройство в клеммное соединение или в непосредственной близости от него, используют металлическое устройство в качестве основы для термодатчика, для измерения температуры используют свойство изменения электрического сопротивления тел при изменении температуры, с помощью исполнительной схемы производят измерение, или сравнение, или контроль напряжения, значение которого зависит от изменения температуры, с заданным напряжением, и в случае повышения температуры до заданного значения или выше размыкают или разрывают электрическую цепь, а после понижения температуры ниже заданного значения замыкают или восстанавливают электрическую цепь. 3 з.п. ф-лы, 5 ил. Подробнее
Дата
2019-10-16
Патентообладатели
Галикеев Ирек Халяфович , Куринов Виталий Сергеевич
Авторы
Галикеев Ирек Халяфович , Куринов Виталий Сергеевич , Коротков Сергей Иванович
ИМИТАЦИОННАЯ СИСТЕМА КОНТРОЛЯ КАЧЕСТВА МОТОРНОГО МАСЛА ТРАНСПОРТНЫХ СРЕДСТВ / RU 02724072 C1 20200619/
Открыть
Описание
Изобретение относится к двигателестроению, в частности к устройствам для стендовых испытаний двигателей внутреннего сгорания (ДВС) с принудительным зажиганием с жидким и газообразным топливом. Полезная модель может быть использована для визуальной демонстрации работы электронных блоков управления двигателем, а в частности для наблюдения за контролем качества масла в реальном времени. Представлена имитационная система контроля качества моторного масла транспортных средств, содержащая датчик частоты вращения коленчатого вала, датчик массового расхода топлива, датчик давления газов в цилиндре двигателя, датчик положения дроссельной заслонки, датчик детонации, датчик угловых отметок коленчатого вала, датчик концентрации кислорода, датчик массового расхода воздуха и газоанализатор вредных выбросов в продуктах сгорания, установленные на испытуемом двигателе, электронный блок управления испытуемым двигателем, аналого-цифровой преобразователь, персональный компьютер с монитором, модель электронного блока управления макетом двигателя, ее интерфейсом связи с персональным компьютером и монитором, имитатор ключа зажигания, генератор-имитатор сигналов вышеназванных датчиков, коммутатор указанных сигналов, блок задания режимов. Система дополнительно снабжена датчиком контроля качества моторного масла, датчиком температуры моторного масла и электронным блоком оценки результатов измерений данных датчиков. Изобретение обеспечивает определение влияния качества масла на эксплуатационно-технические показатели транспортных средств для осуществления диагностических, исследовательских, доводочных и лабораторных испытаний. 1 ил. Подробнее
Дата
2019-10-14
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Санкт-Петербургский горный университет"" "
Авторы
Сафиуллин Равиль Нуруллович , Сорокин Кирилл Владиславович
Способ диагностирования цепей измерения температур / RU 02724247 C1 20200622/
Открыть
Описание
Изобретение относится к измерительной технике и может быть использовано в системах автоматического измерения, управления и аварийной защиты, в состав которых входят измерители температуры на основе термопар. Предложен способ диагностирования цепей измерения температур включает нагрев термопар с последующим измерением температур и анализом результатов измерения температур. При этом проводят нагрев холодных спаев термопар, а анализ проводят путем сравнения температур холодного спая и температур измеряемой среды до и после нагрева, причем исправность цепей измерения температуры выявляют по величине приращения температуры холодного спая ΔТХС и стабильности температуры измеряемой среды. Технический результат - упрощение схемы диагностирования и обеспечение непрерывного контроля температуры во время проведения диагностирования. 1 ил. Подробнее
Дата
2019-10-09
Патентообладатели
"Акционерное общество ""Научно-исследовательский институт физических измерений"" "
Авторы
Мухатаев Николай Афанасьевич
АВТОМАТИЗИРОВАННАЯ УСТАНОВКА КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ СПЕЦИАЛЬНОГО ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ АВТОТОПЛИВОЗАПРАВЩИКОВ / RU 02718713 C1 20200414/
Открыть
Описание
Изобретение относится к испытательному оборудованию контроля технического состояния специального технологического оборудования автотопливозаправщиков. Установка содержит единый переносной корпус, выполненный в виде трансформируемого в столешницу (1) модуля, на которой жестко закреплен отрезок гидротрубопровода. К отрезку гидротрубопровода подсоединен коллектор (2) с запорным устройством (3) для подключения к напорной линии насоса контролируемого АТЗ. В коллекторе (2) выполнены дополнительные параллельные патрубки с запорными устройствами (4) и (5) для подключения к индивидуальным счетчикам жидкости контролируемого АТЗ. На отрезке гидротрубопровода, жестко связанном со столешницей, установлены датчик (6) температуры прокачиваемой по гидротрубопроводу жидкости, струевыпрямитель (7), вмонтированный внутри гидротрубопровода, за которым установлен эталонный расходомер-счетчик (8) и электроуправляемое запорное устройство (9). На столешнице (1) жестко закреплен программный блок (10) управления с индивидуальным блоком питания, программатором и считывателем, к которому подключены мобильный датчик (11) измерения частоты вращения вала насоса контролируемого АТЗ, аналого-цифровые преобразователи разрежения (12) и давления (13) на входе и выходе насоса контролируемого АТЗ. Достигается повышение эффективности автоматизированной установки контроля технического состояния специального технологического оборудования автотопливозаправщиков за счет расширения перечня контролируемых сборочных единиц СТО АТЗ с одновременным снижением трудозатрат и повышением оперативности контроля в полевых условиях эксплуатации. 1 з.п. ф-лы, 5 ил. Подробнее
Дата
2019-10-07
Патентообладатели
"Федеральное автономное учреждение ""25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации"" "
Авторы
Багаев Леонид Александрович , Красовский Виктор Семенович , Кирпичников Виктор Николаевич , Середа Владимир Васильевич , Таран Владимир Михайлович
4-[метил 4-(аминометил)циклогексанкарбоксилат]хиназолин и способ его получения / RU 02723481 C1 20200611/
Открыть
Описание
Изобретение относится к способу получения 4-[метил 4-(аминометил)циклогексанкарбоксилат]хиназолина, который осуществляется реакцией взаимодействия эквимолярных количеств 4-хлорхиназолина с гидрохлоридом метил 4-(аминометил)циклогексанкарбоксилата, проводимой при комнатной температуре и интенсивном перемешивании при прибавлении по каплям к раствору 4-хлорхиназолина в хлороформе раствора гидрохлорида метил 4-(аминометил)циклогексанкарбоксилата в хлороформе, содержащего триэтиламин в количестве 2-10 молей на моль гидрохлорида метил 4-(аминометил)циклогексанкарбоксилата. Полученная реакционная масса перемешивается при комнатной температуре до образования конечного продукта при контроле степени превращения исходных реагентов в целевой продукт методом тонкослойной хроматографии при использовании в качестве элюента смеси, содержащей хлороформ: метанол, взятые в объемном соотношении 10:1. Последующее выделение 4-[метил 4-(аминометил)циклогексанкарбоксилат]хиназолина осуществляется поэтапно и включает фильтрацию, промывку фильтрата водой и насыщенным раствором хлорида натрия, повторную промывку водой, высушивание сульфатом натрия, упаривание в вакууме, обработку диэтиловым эфиром, повторную фильтрацию и вакуумное высушивание отфильтрованного осадка 4-[метил 4-(аминометил)циклогексанкарбоксилат]хиназолина. Выход конечного продукта 85%. Полученное соединение может быть использовано в качестве прекурсора для синтеза потенциально активных ингибиторов пролилпептидазы, применямых при лечении онкологических заболеваний. 2 з.п. ф-лы, 1 ил., 2 пр. Подробнее
Дата
2019-10-03
Патентообладатели
"ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ ""ИНСТИТУТ ХИМИЧЕСКИХ РЕАКТИВОВ И ОСОБО ЧИСТЫХ ХИМИЧЕСКИХ ВЕЩЕСТВ НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО ЦЕНТРА ""КУРЧАТОВСКИЙ ИНСТИТУТ"" "
Авторы
Осипов Василий Николаевич , Царькова Ксения Валерьевна , Егоров Антон Сергеевич , Убаськина Юлия Александровна
СПОСОБ СВЕРХЗВУКОВОЙ ТЕРМОШОКОВОЙ ПОДГОТОВКИ ПОВЕРХНОСТИ И ВЫСОКОСКОРОСТНОГО ГАЗОДИНАМИЧЕСКОГО И ТЕРМОДИФФУЗИОННОГО НАНЕСЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ / RU 02724230 C1 20200622/
Открыть
Описание
Изобретение относится к области сверхзвуковой термоабразивной термошоковой обработки поверхностей деталей с последующим высокоскоростным нанесением металлических или композиционных защитных покрытий и может быть использовано в различных отраслях промышленности. Предложенный способ включает загрузку изделий в реакционную камеру, вращение реакционной камеры, обработку изделий, открытие рабочей полости реакционной камеры и выгрузку изделий. После заполнения рабочей камеры изделиями ее закрывают фланцем. Затем через отверстие во фланце в реакционную камеру вводят сопло сверхзвукового аппарата для формирования регулируемых и управляемых по параметрам сверхзвуковой струи продуктов сгорания жидкого или газообразного углеводородного топлива в потоке сжатого воздуха, устанавливают скорость сверхзвуковой струи в пределах 1-7 Маха. Затем доводят температуру на поверхности обрабатываемых изделий в реакционной камере в диапазоне от 30 до 600 оС за время не более 2 секунд, выдавливают с помощью сверхзвукового аппарата атмосферный кислород от обрабатываемой поверхности изделия, проводят очистку поверхности изделий от загрязнений, окалины и окислов и осуществляют активацию поверхности изделий. После чего на поверхность изделий в непрерывном по времени процессе осуществляют нанесение защитного покрытия, при котором управляют подачей в сверхзвуковой аппарат требуемых порошковых материалов и/или пассирующих растворов. Предложенное устройство содержит реакционную камеру с возможностью вращения вокруг оси рамы посредством привода вращения для перехода в положение «загрузка» и «выгрузка», фланец, обеспечивающий закрывание реакционной камеры, сверхзвуковой аппарат, блок управления, обеспечивающий измерение параметров подачи и дозирования порошковых материалов и регулирование параметров сверхзвуковой струи продуктов сгорания жидкого или газообразного углеводородного топлива в потоке сжатого воздуха, датчики контроля и фиксации реакционной камеры в трех положениях «загрузка», «обработка», «выгрузка» и положения сверхзвукового аппарата, систему видеоконтроля полости реакционной камеры и систему отвода продуктов сгорания, рекуперации материалов и пылеулавливания. Обеспечивается повышение качества очистки поверхностей деталей и нанесения покрытия, увеличение производительности за счет интенсификации процесса обработки, сокращение межоперационных переходов и улучшение экологичности за счет исключения попадания в цех пылеобразных и газообразных компонентов. 2 н. и 4 з.п. ф-лы, 1 ил., 2 пр. Подробнее
Дата
2019-10-01
Патентообладатели
Гальченко Вячеслав Петрович
Авторы
Гальченко Вячеслав Петрович , Андреев Анатолий Николаевич