Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
СПОСОБ ЭНЕРГООБЕСПЕЧЕНИЯ ПОДВОДНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ / RU 02724197 C1 20200622/
Открыть
Описание
Изобретение относится к области электротехники и может быть использовано в электроэнергетических системах подводных аппаратов с большой автономностью и дальностью плавания. Устройство для энергообеспечения подводного аппарата содержит аккумуляторную батарею, полупроводниковый преобразователь, синхронную машину с магнитоэлектрическим возбуждением, ротор которой механически соединен с винтом, а обмотка статора подключена к цепи переменного тока полупроводникового преобразователя, цепь постоянного тока которого подключена к аккумуляторной батарее. Дополнительно введены устройство контроля положения продольной оси корпуса подводного аппарата и управления им и устройство для фиксации положения продольной оси корпуса подводного аппарата встречно направлению потока воды и неподвижно по отношению к морскому дну. Обмотка статора синхронной машины выполнена многофазной из N трехфазных обмоток. Полупроводниковый преобразователь выполнен обратимым по модульной схеме из N однотипных полупроводниковых модулей, мощность каждого из которых равна 1/N мощности синхронной машины. Цепи постоянного тока N полупроводниковых модулей обратимого полупроводникового преобразователя при работе синхронной машины в двигательном режиме соединены параллельно, а при работе синхронной машины в генераторном режиме соединены последовательно. Для энергообеспечения подводного аппарата в качестве источника энергии при заряде аккумуляторной батареи используется морское течение, механическая энергия которого при прохождении потока воды через лопасти винта при фиксированном положении продольной оси корпуса подводного аппарата встречно направлению потока воды и неподвижно по отношению к морскому дну преобразуется в электрическую энергию. Достигается увеличение автономности и дальности плавания подводного аппарата. 2 н. и 1 з.п. ф-лы, 1 ил. Подробнее
Дата
2019-12-25
Патентообладатели
"Федеральное государственное унитарное предприятие ""Крыловский государственный научный центр"" "
Авторы
Мартынов Александр Александрович , Самсыгин Вадим Константинович , Соколов Дмитрий Владимирович
Способ транссептальной пункции при криобаллонной аблации устьев легочных вен / RU 02724491 C1 20200623/
Открыть
Описание
Группа изобретений относится к области медицины, а именно к кардиологии. Согласно первому варианту изобретения выполняют установку интродьюсера для транссептальной пункции SR0 в верхнюю полую вену, установку эхокардиографического датчика в сердце для визуализации межпредсердной перегородки (МПП). Проводят интродьюсер для транссептальной пункции с транссептальной иглой из верхней полой вены в правое предсердие (ПП) под флюроскопическим контролем. Устанавливают интродьюсер в области овальной ямки МПП. При этом кончик транссептальной иглы устанавливают в центрально-заднем положении в МПП, что контролируют под ВСЭхоКГ. Визуализируют МПП установив датчик для ВСЭхоКГ контроля. При этом центральное положение транссептальной иглы в МПП подтверждается равным расстоянием кончика иглы от гребня мышцы МПП и фиброзного кольца трикуспидального клапана. Заднее положение подтверждается следующим образом: поворот внутрисердечного датчика на 40-90° по часовой стрелке позволяет визуализировать корень аорты, а против часовой стрелки на 30-80° - заднюю стенку левого предсердия (ЛП). При этом угол разворота по часовой стрелке для визуализации корня аорты на 10-20% был больше угла разворота против часовой стрелки для визуализации задней стенки ЛП. Согласно второму варианту способа выполняют установку интродьюсера для транссептальной пункции SR0 в верхнюю полую вену. Устанавливают эхокардиографический датчик в пищевод. Осуществляют проведение интродьюсера для транссептальной пункции с транссептальной иглой из верхней полой вены в правое предсердие (ПП) под флюроскопическим контролем. Устанавливают интродьюсер в области овальной ямки МПП. При этом кончик транссептальной иглы устанавливают в центрально-заднем положении в МПП, что контролируют под ЧПЭхоКГ. После чего, по внутренним ориентирам – фиброзному кольцу аортального клапана определяют данные позиции. При этом последовательно визуализируют МПП в двух пищеводных позициях: аортальный клапан по короткой оси и бикавальная. Данная позиция визуализируется в верхнем пищеводном положении датчика, на 45-75 и позволяет оценить передне-заднее положение транссептальной иглы, при этом в центре находится аортальный клапан, на 10 часах от клапана - МПП, разделяющая ПП и ЛП. Бикавальная позиция, достигается при позиционировании датчика в средней трети пищевода, после выведения короткой оси аортального клапана проводят ротацию датчика по часовой стрелке и изменение ангуляции на 90-120°, таким образом, чтобы в центре визуализировалась полость ПП, полость ЛП и отделяющая их МПП. При этом бикавальная позиция позволяет оценить верхнюю, центральную и нижнюю позиции транссептального интродьюсера и иглы. Группа изобретений позволяет упростить достижение окклюзии ЛВ криобаллоном независимо от вариабельности анатомии ЛВ, что способствует сокращению врем проведения процедуры и повышает эффективность КБА, что снижает необходимость повторных процедур, частоту госпитализаций и улучшает качество жизни больных. 2 н.п. ф-лы, 8 ил., 2 пр. Подробнее
Дата
2019-12-24
Патентообладатели
"федеральное государственное бюджетное учреждение ""Национальный медицинский исследовательский центр терапии и профилактической медицины"" Министерства здравоохранения Российской Федерации "
Авторы
Давтян Карапет Воваевич , Топчян Арпи Грайровна , Симонян Георгий Юрьевич , Калемберг Андрей Анатольевич , Чугунов Иван Александрович
УСТРОЙСТВО УПРАВЛЕНИЯ АВТОНОМНЫМ АСИНХРОННЫМ ГЕНЕРАТОРОМ / RU 02722689 C1 20200603/
Открыть
Описание
Изобретение относится к электротехнике, в частности к устройству управления автономным асинхронным генератором. Техническим результатом является точное и быстрое определение величины подключаемой нагрузки и точное определение значению величины емкости форсирующих конденсаторов, повышение динамической устойчивости асинхронного генератора, уменьшение длительности переходных процессов и повышение качества электроэнергии. Устройство управления автономным асинхронным генератором, его силовая часть (фиг. 1) содержит асинхронный генератор (1) с тремя фазными обмотками U, V, W, соединенными в генераторе (1) общей точкой - нейтралью N и одноименно выведенным проводом. К фазным обмоткам и нейтрали U, V, W, N присоединены конденсаторы (2) самовозбуждения асинхронного генератора (1), имеющие малую емкость. К фазным обмоткам и нейтрали U, V, W, N одним концом присоединены блоки фазных форсирующих конденсаторов (3), обеспечивающие дополнительное возбуждение асинхронного генератора (1) при подключении нагрузки. Коммутация других концов блоков фазных форсирующих конденсаторов (3) осуществляется блоками трехфазных электронных ключей (4) к фазам U, V, W асинхронного генератора (1). В блоках трехфазных электронных ключей (4) в качестве ключей используют транзисторные ключи переменного тока. Транзисторные ключи переменного тока в отличие от тиристоров обеспечивают включение и выключение в требуемые моменты времени. Управление блоками электронных ключей (4) выполняется по цепям управления ключами (5) системой управления (6). Возможно независимое управление каждым ключом переменного тока в блоке трехфазных электронных ключей (4). Блоков фазных форсирующих конденсаторов (3) и блоков электронных ключей (4) может быть несколько в зависимости от мощности асинхронного генератора (1) и требуемой точности регулирования напряжения. Контроль фактического напряжения генератора (1) осуществляется в каждой фазе U, V, W, и их значения по цепям контроля напряжения (7) передаются в систему управления (6). В каждой фазе асинхронного генератора (1) установлены трансформаторы тока (8). По первичным обмоткам трансформаторов тока (8) протекают токи нагрузки фаз i1. По вторичным обмоткам трансформаторов тока (8) протекают токи i2 и по цепям (9) контроля тока поступают в систему управления (6). На выходе асинхронного генератора (1) за трансформаторами 8 тока установлен выключатель (10) асинхронного генератора (1). Система управления (6) (фиг. 2) содержит: преобразователь (11) величины напряжения фаз; датчики (12) перехода напряжений фаз через ноль; таймер (13), который синхронизирован с напряжением асинхронного генератора (1), через преобразователь (11) величины напряжения фаз; масштабные преобразователи (14) величины вторичного тока i2u, i2v, i2w трансформаторов тока (8); датчики (15) перехода вторичного тока через ноль каждой фазы; измерительные синхронизированные датчики (16) вторичного тока фаз, синхронизированные таймером (13) с напряжением асинхронного генератора (1); блок (17) вычисления мощности нагрузки, подключенной к асинхронному генератору (1); блок вычисления требуемой емкости (18) блока фазных форсирующих конденсаторов (3); формирователь (19) команд управления блоков электронных ключей (4), синхронизированное с напряжением асинхронного генератора (1); блок питания (20) элементов системы управления (6). 3 ил. Подробнее
Дата
2019-12-05
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Ставропольский государственный аграрный университет"" "
Авторы
Коваленко Владимир Васильевич , Ефанов Алексей Валерьевич , Дудка Виктор Николаевич
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НАЧАЛА ИЗМЕНЕНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ И ПРЕДЕЛЬНОЙ ТЕМПЕРАТУРЫ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ / RU 02722119 C1 20200526/
Открыть
Описание
Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение времени, через равные промежутки времени пробу окисленного смазочного материала взвешивают, часть пробы фотометрируют и определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности. По данным показателям термоокислительной стабильности вычисляют количество тепловой энергии, поглощенной продуктами окисления, продуктами испарения, и суммарную поглощенную тепловую энергию при термостатировании смазочного материала, которое определяют произведением значения температуры, умноженной на время испытания и значение соответствующего показателя термоокислительной стабильности. Вычисляют десятичные логарифмы поглощенной тепловой энергии для каждого показателя и строят графические зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от десятичного логарифма времени и температуры испытания. По этим зависимостям определяют значения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при заданном десятичном логарифме времени испытания и температурах испытания. Также определяют значения десятичного логарифма времени испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре. Кроме того, определяют значения десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности при каждой температуре. На основании полученных данных для каждого показателя строят дополнительные графические зависимости. При этом по зависимости десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания определяют температуру начала изменения десятичного логарифма поглощенной тепловой энергии при заданном десятичном логарифме времени испытания. По зависимости десятичного логарифма времени испытания от температуры испытания при заданном значении десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности определяют предельную температуру работоспособности исследуемого смазочного материала, а по зависимости десятичного логарифма времени начала изменения десятичного логарифма поглощенной тепловой энергии показателя термоокислительной стабильности от температуры испытания прогнозируют начало изменения десятичного логарифма поглощенной тепловой энергии для других температур. Технический результат - повышение информативности контроля смазочных материалов для сравнения их качества и выбора. 3 ил., 1 табл. Подробнее
Дата
2019-12-04
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Сибирский федеральный университет"" "
Авторы
Ковальский Болеслав Иванович , Лысянникова Наталья Николаевна
Автономное огнегасящее изделие с возможностью получения характеристик объекта и способ изготовления такого изделия / RU 02722416 C1 20200529/
Открыть
Описание
Изобретения относятся к средству тушения пожаров в объеме, а именно к автономному огнегасящему изделию, изготовленному по технологии термоактивируемых огнетушащих веществ и содержащему микрокапсулированный и/или гранулированный огнегасящий агент. Изделие выполнено в виде пластины, с одной стороны которой нанесены клеевой слой и защитная пленка, а с другой - радиометка и связанная с ней внешняя антенна и/или датчик, поверх которых расположен слой компаунда, содержащий микрокапсулированный огнегасящий агент, или в виде шнура, заполненного гранулированным огнегасящим агентом, в котором размещена радиометка, а внешняя антенна и/или датчик вплетены в оплетку шнура. В качестве радиометки встроены транспондеры RFID (Radio Frequency Identification - Радиочастотной Идентификации) активного и/или пассивного принципа действия. Огнегасящее изделие обладает возможностью радиочастотной идентификации, фиксации и передачи информации о состоянии объекта и воздействиях на изделие. Технический результат заключается в получении достоверной информации и повышении контроля за надежностью установленного огнегасящего изделия за счет дистанционного получения оперативной и достоверной информации о его состоянии, работоспособности, наличии воздействий и контроле гарантийного срока эксплуатации. 5 з.п. ф-лы, 10 ил., 3 табл. Подробнее
Дата
2019-12-02
Патентообладатели
"Общество с ограниченной ответственностью ""РУСИНТЕХ"" "
Авторы
Скирневский Денис Александрович , Пигалицын Виктор Алексеевич
Централизованное интеллектуальное электронное устройство системы автоматизированной электрической подстанции / RU 02720318 C1 20200428/
Открыть
Описание
Изобретение относится к области электроники, в частности к автоматизации распределительных устройств высокого напряжения объектов электроэнергетики. Технический результат заключается в повышении производительности централизованного ИЭУ системы автоматизации электрической подстанции при реализации функций коммерческого учета и контроля качества электроэнергии при одновременном обеспечении надежности электропитания. Достигается тем, что централизованное интеллектуальное электронное устройство системы автоматизации электрической подстанции содержит размещенные в корпусе модуль человеко-машинного интерфейса, соединенный с дисплеем с сенсорной панелью, модули релейной защиты и автоматики, модули счетчика учета электрической энергии и контроля качества электрической энергии, подключенные к общей шине питания, которая снабжена модулем резервирования шины питания. При этом модуль резервирования шины питания подключен к основному и резервному источникам питания, а центральный процессор модуля HMI снабжен постоянным запоминающим устройством. Модули РЗА и СУ выполнены с возможностью приема данных от источников измерений величин тока и напряжения системы автоматизации электрической подстанции. 3 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-11-29
Патентообладатели
"Публичное акционерное общество ""Транснефть"" , Общество с ограниченной ответственностью ""Научно-исследовательский институт трубопроводного транспорта"" , Акционерное общество ""Транснефть - Дружба"" , Акционерное общество ""Транснефть - Сибирь"" "
Авторы
Наумов Владимир Александрович , Ревель-Муроз Павел Александрович , Воронов Владимир Иванович , Копысов Андрей Федорович , Немцев Александр Александрович , Фридлянд Яков Михайлович , Воронов Сергей Владимирович , Кукунин Евгений Михайлович , Симонов Игорь Леонидович , Куимов Сергей Анатольевич , Зайцев Сергей Сергеевич , Бурмистров Александр Михайлович , Егоров Дмитрий Александрович , Ксенофонтова Екатерина Владимировна
СПОСОБ КОНТРОЛЯ КОНИЧЕСКИХ ОТВЕРСТИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ / RU 02720326 C1 20200428/
Открыть
Описание
Изобретение относится к измерительной технике и может быть применено, например, для контроля круглости конических отверстий в производстве топливной аппаратуры дизельных двигателей внутреннего сгорания. Способ контроля конических отверстий включает подачу сжатого воздуха в сопряжение контролируемой детали и калибра, устанавливаемого на посадочную поверхность контролируемой детали. Оцениваемым показателем отклонения формы является круглость поверхности конического отверстия, а для оценки допустимости отклонения применяется продолжительность изменения в заданном интервале давления воздуха в полости устройства над контролируемым коническим отверстием. Устройство для осуществления способа контроля конических отверстий включает систему подачи сжатого воздуха к контролируемой поверхности, калибр и отсчетное устройство, при этом в качестве калибра применяется стальной шарик. Степень точности шарика определяется величиной допуска круглости контролируемого конического отверстия, заданного в конструкторской документации, а отсчетное устройство включает манометр и секундомер. Техническим результатом является упрощение процедуры контроля круглости конических отверстий. 2 н.п. ф-лы, 2 ил., 1 пр. Подробнее
Дата
2019-11-28
Патентообладатели
"Общество с ограниченной ответственностью Управляющая компания ""Алтайский завод прецизионных изделий"" "
Авторы
Звягин Антон Владимирович , Свещинский Владислав Октябревич , Лебедев Анатолий Афанасьевич , Захаров Виктор Иванович , Денисов Олег Спартакович
Система высокозащищенного контроля доступа / RU 02721315 C1 20200518/
Открыть
Описание
Система высокозащищенного контроля доступа, включающая в себя ключ и модуль контроля доступа, использующая как верификационный признак ключа уникальные рефракционные (преломляющие) свойства недублируемых объектов случайной формы, прозрачных для электромагнитного излучения с определенной длиной волны, ориентированных случайным образом относительно луча электромагнитного излучения. При этом в качестве метода распознавания уникальных рефракционных свойств объектов случайной формы и, соответственно, верификации ключа используется направление сквозь прозрачный объект либо объекты случайной формы, входящие в ключ луча электромагнитного излучения от источника электромагнитного излучения, размещенного в модуле контроля доступа, с последующим анализом свойств пучка электромагнитного излучения, образованного преломленным прозрачным объектом либо объектами случайной формы лучом электромагнитного излучения, путем направления упомянутого пучка на сенсор электромагнитного излучения, позволяющий зафиксировать для последующего анализа характерные особенности упомянутого пучка и, таким образом, провести верификацию ключа для принятия решения о предоставлении доступа либо отказе в доступе к защищаемому объекту. 6 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-11-28
Патентообладатели
Хлопков Константин Александрович
Авторы
Хлопков Константин Александрович
Устройство контроля технико-тактических действий волейболистов в защите / RU 02717720 C1 20200325/
Открыть
Описание
Изобретение относится к области спорта, в частности к тренировочным средствам, необходимым для подготовки к соревнованиям, формированию технико-тактических действий в защите и развитию у спортсменов волейболистов специальных физических качеств. Недостатком известного устройства является то, что оно не в полной степени решает задачу по осуществлению контроля выполнения технико-тактических действий в защите и оценки уровня подготовленности каждого спортсмена в команде. Данное устройство позволяет фиксировать только период времени от начала отталкивания спортсмена от пола при прыжке до правильного положения его рук в конечной фазе полета. Таким образом, нет возможности полного моделирования игровой ситуации с осуществлением контроля всех технико-тактических действий игрока, включающих реакцию игрока на сигнал начала движения с последующим перемещением до места отталкивания от пола при совершении прыжка и выбор правильного направления для блокирования нападающего удара соперника. Устройство тренажера позволяет контролировать технико-тактические действия игроков в защите с моделированием различных игровых ситуаций, проводить объективную оценку уровня их подготовленности при выполнении одиночного блокирования, что дает возможность тренерскому составу выявлять недостатки и оперативно вносить поправки в процесс тренировки индивидуально для каждого игрока, осуществлять качественный контроль тренировочного процесса в целом. Техническим результатом предложенного изобретения является обеспечение возможности контроля технико-тактических действий игроков в защите и оценки их уровня подготовленности при выполнении одиночного блокирования в момент моделирования различных игровых ситуаций, выявление ошибок и внесение тренерским составом корректировок при выполнении технико-тактических действий в защите, а также интенсификация скоростно-силовой выносливости игроков. Подробнее
Дата
2019-11-25
Патентообладатели
Кочанов Денис Леонидович
Авторы
Кочанов Денис Леонидович
Способ получения хлорида олова (II) путем окисления металла / RU 02717528 C1 20200323/
Открыть
Описание
Изобретение может быть использовано при проведении аналитического контроля и научных исследований. Способ получения хлорида олова (II) SnCl2 включает окисление металлического олова пероксидом водорода в присутствии органического растворителя, соляной кислоты, стимулирующей добавки йода и добавки, стабилизирующей продукт от дальнейшего окисления. В качестве органического растворителя берут уайт-спирит. Процесс проводят в бисерной мельнице вертикального типа с высокооборотной лопастной мешалкой и стеклянным бисером в качестве перетирающего агента. Стеклянный бисер дозируют в массовом соотношении 1:1 с остальной загрузкой без учета массы металла и загружают в реактор первым. Затем загружают олово в количестве 10-15% от остальной загрузки. Загруженную твердую фазу омывают расчетными количествами водного раствора пероксида водорода и раствора соляной кислоты со стехиометрическими избытками в расчёте на получение продукта в количестве 0,20-0,35 моль/(кг реакционной смеси без учета металла). Далее вводят уайт-спирит, стабилизирующую продукт добавку и йод. Включают механическое перемешивание. При достижении заданного количества продукта перемешивание прекращают. Реакционную смесь пропускают через сетку для отделения перетирающего агента и непрореагировавшего металла. Полученную суспензию-эмульсию реакционной смеси фильтруют. Осадок на фильтре промывают растворителем жидкой фазы и сушат или направляют на дополнительную очистку. Изобретение позволяет избавиться от избытка концентрированной соляной кислоты как среды для подавления гидролиза хлорида олова (II), обеспечить практически полное превращение реагента в продукт с высокой избирательностью по нему. 3 з.п. ф-лы, 2 табл., 10 пр. Подробнее
Дата
2019-11-22
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Юго-Западный государственный университет"" "
Авторы
Иванов Анатолий Михайлович , Пожидаева Светлана Дмитриевна , Емельянова Мария Сергеевна
СПОСОБ УПРАВЛЕНИЯ РАБОЧИМ ЦИКЛОМ ПРОЦЕССА ШЛИФОВАНИЯ / RU 02715580 C1 20200302/
Открыть
Описание
Изобретение относится к обработке металлов резанием, в частности к управлению процессом обработки на шлифовальных станках при изготовлении, например, колец подшипников. В процессе шлифования формируют команды, поступающие от прибора активного контроля, с помощью которого измеряют значение показателей процесса шлифования обрабатываемого изделия. Синхронно в режиме реального времени фиксируют показатели геометрического образа обрабатываемой детали во времени и энергетический образ шлифовального шпинделя станка. Сравнивают значения показателей процесса шлифования обрабатываемого изделия с эталонными соответствующими показателями и выдают управляющую команду на изменение процесса шлифования. Для создания геометрического образа обрабатываемой детали во времени выбран размер диаметра, а для создания энергетического образа шлифовального шпинделя станка – величина потребляемого им тока. В результате снижается трудоемкость выполнения статистического контроля технологического процесса шлифования и повышается качество выпускаемой продукции. 2 з.п. ф-лы, 1 ил. Подробнее
Дата
2019-11-21
Патентообладатели
"Закрытое акционерное общество ""Мезон"" "
Авторы
Реутов Валерий Николаевич , Шиляев Сергей Дмитриевич
Установка по очистке жидкой макулатурной массы / RU 02720898 C1 20200513/
Открыть
Описание
Изобретение относится к целлюлозно-бумажной промышленности и позволяет удалить из перемолотой макулатурной массы гидрофобные и гидрофильные загрязнения. Целью изобретения является повышение качества очистки макулатурной массы от гидрофильных и гидрофобных загрязнений, снижения расхода электроэнергии, автоматизации процесса. Поставленная задача достигается тем, что предлагается использовать установку для очистки жидкой макулатурной массы от гидрофильных и гидрофобных загрязнений, состоящую из приемного бассейна, трубопровода подающего неочищенную макулатурную массу, плавающего сетчатого фильтра, систему отсоса гидрофобных загрязнений, включающую поворотное сопло, отсасывающий вентилятор, фильтр-накопитель гидрофобных загрязнений, систему контроля накопления гидрофобных загрязнений, включающую излучатель светового потока и его приемник, трубопровод подачи чистой массы, трубопроводов сброса гидрофильных загрязнений и трубопровод перелива макулатурной массы из приемного бассейна. 1 ил. Подробнее
Дата
2019-11-20
Патентообладатели
Абрамов Евгений Вениаминович
Авторы
Абрамов Евгений Вениаминович
Способ получения нитрата олова (IV) путем окисления нитрата олова (II) / RU 02717810 C1 20200325/
Открыть
Описание
Изобретение может быть использовано при проведении аналитического контроля и научных исследований. Для получения нитрата олова (IV) Sn(NO3)4 окисляют нитрат олова (II) Sn(NO3)2 в присутствии азотной кислоты. В качестве окислителя используют пероксид водорода с концентрацией в водном растворе 8-15%, который дозируют с избытком в отношении оловосодержащего восстановителя - нитрата олова (II). Азотную кислоту берут в виде 54%-ного водного раствора в мольном соотношении с восстановителем (2,05-2,40):1. Процесс проводят при комнатной температуре в бисерной мельнице со стеклянным бисером в качестве перетирающего агента в присутствии уайт-спирита как базового компонента объемной фазы. Дозировку реагентов рассчитывают на 0,2-0,5 моль/кг продукта в конечной реакционной смеси и проводят в следующей последовательности: стеклянный бисер, пероксид водорода, азотная кислота. Затем вводят уайт-спирит и нитрат олова (II), включают механическое перемешивание. После практически полного расходования нитрата олова (II) в реакционной смеси процесс прекращают, отделяют стеклянный бисер. Реакционную смесь фильтруют, осадок на фильтре промывают уайт-спиритом, снимают с фильтра и сушат или направляют на дополнительную очистку. Изобретение позволяет обеспечить практически полное расходование исходного оловосодержащего реагента с высокой избирательностью по целевому продукту. 1 з.п. ф-лы, 1 ил., 1 табл., 9 пр. Подробнее
Дата
2019-11-13
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Юго-Западный государственный университет"" "
Авторы
Иванов Анатолий Михайлович , Пожидаева Светлана Дмитриевна , Родионова Мария Сергеевна
Способ контроля качества аммиачной тепловой трубы / RU 02724316 C1 20200622/
Открыть
Описание
Изобретение относится к теплотехнике. Способ контроля качества аммиачной тепловой трубы включает накладывание фильтровальной бумаги, смоченной индикаторным раствором, содержащим 3%-ный раствор CoCl2⋅6H2O, на контролируемый участок трубы, определение места течи по появлению пятен или точек, окрашенных в цвет от голубого до сине-фиолетового, почти черного, в зависимости от количества поступившего аммиака, при этом к середине тепловой трубы осуществляют импульсный подвод тепла, а контролируемый участок трубы с наложенным на него индикатором аммиака до подвода тепла герметизируют с помощью оптически прозрачного материала. Техническим результатом является сокращение времени контроля дефектных областей, повышение информативности контроля, увеличение чувствительности и снижение методической погрешности способа. 1 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-11-12
Патентообладатели
"Акционерное общество ""ОКБ-Планета"" АО ""ОКБ-Планета"" "
Авторы
Петров Александр Владимирович , Евстигнеев Даниил Алексеевич , Карачинов Владимир Александрович , Ионов Александр Сергеевич , Петров Дмитрий Александрович
СПОСОБ ОПРЕДЕЛЕНИЯ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАСЕЛ / RU 02713920 C1 20200211/
Открыть
Описание
Изобретение относится к технологии оценки качества работающих моторных масел, технического состояния двигателей внутреннего сгорания и системы фильтрации. Предложен способ определения работоспособности смазочного масла, заключающийся в том, что отбирают пробы работающего масла из двигателя внутреннего сгорания в течение установленного пробега, определяют соответствующий времени отбора пробы пробег автомобиля, пробу фотометрируют, определяют оптическую плотность, умножением оптической плотности на пробег вычисляют количество тепловой энергии, поглощенной продуктами старения смазочного масла за время работы двигателя, определяют десятичный логарифм тепловой энергии, поглощенной продуктами старения смазочного масла за время его работы в двигателе, строят графическую зависимость десятичного логарифма тепловой энергии, поглощенной продуктами старения смазочного масла за время работы, от пробега, по которой определяют работоспособность смазочного масла. Технический результат – повышение информативности контроля состояния работающего смазочного масла, технического состояния двигателя и системы фильтрации за период эксплуатации. 2 ил., 4 табл. Подробнее
Дата
2019-11-12
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Сибирский федеральный университет"" "
Авторы
Ковальский Болеслав Иванович , Верещагин Валерий Иванович , Сокольников Александр Николаевич
Способ автоматизированного контроля сплошности изделий и устройство для его осуществления / RU 02720437 C1 20200429/
Открыть
Описание
Изобретение относится к области измерительной техники и может быть использовано для оценки надежности и качества различных изделий. Способ включает размещение на изделии в начале траектории сканирования эталонного дефекта, соответствующего по характеристикам реальному дефекту в изделии и имеющего размеры, соответствующие минимально возможным размерам дефекта в изделии, измерение перед проведением контроля величины сигнала на изделии на расстоянии не более размера минимального дефекта, измерение величины изменения сигнала на эталонном дефекте, установку величины порогового сигнала для выявления дефектов в изделии, двухмерное сканирование в координатах х, у поверхности контролируемого объекта по траектории возвратно-поступательного движения датчиком излучения физического поля с шагом Δх, Δу, воздействие на изделие в процессе сканирования физическим полем в виде импульсного сигнала с частотой fи, измерение величины сигналов излучения физического поля после взаимодействия с изделием с каждой точки поверхности изделия, регистрацию дефектов путем сравнения текущего значения сигнала по траектории сканирования с значением пороговым сигнала. Согласно изобретению, при обнаружении дефекта увеличивают частоту импульсов воздействия физическим полем и уменьшают шаг сканирования. После выхода за границы j-го дефекта частоту импульсов и шаг сканирования снижают. Для осуществления способа используют устройство для автоматизированного контроля сплошности изделий. Технический результат - обеспечение оперативного достоверного контроля сплошности многослойных сложных конструкций и их элементов в процессе производства и в реальных условиях эксплуатации, т.е. снижение погрешности определения границ и местоположения дефектных участков без снижения производительности контроля. 2 н. и 1 з.п. ф-лы, 18 ил., 2 табл. Подробнее
Дата
2019-11-11
Патентообладатели
"Акционерное общество ""Дзержинское производственное объединение ""Пластик"" "
Авторы
Караваев Юрий Александрович
Способ хирургической коррекции ладьевидной кости кисти с ложным суставом / RU 02715920 C1 20200304/
Открыть
Описание
Изобретение относится к медицине, а именно к травматологии и ортопедии. В предоперационный период перед выполнением хирургической коррекции ладьевидной кости определяют методом стандартной рентгенографии характер деформации ладьевидной кости в прямой и боковой проекциях, а также определяют многослойной спиральной компьютерной томографией пространственную визуализацию пораженных костных структур и признаки нестабильности связочного аппарата кистевого сустава травмированной конечности. В положении пациента лежа после выполнения аксиллярной проводниковой анестезии и обработки операционного поля растворами антисептиков осуществляют наложение пневматической манжеты на область плеча оперируемой конечности и нагнетанием воздуха создают давление в манжете 310-320 мм рт.ст. Осуществляют фиксацию травмированной кисти в тракционной башне и создают усилие растяжения величиной 5-5,5 кг. Выполняют для постановки портов разрезы кожного покрова в дистальном направлении шириной 5-6 мм, при этом среднезапястный локтевой (MC-U) порт выполняют дистальнее бугорка Листера на 2 см между четвертым и пятым каналами сухожилий разгибателей, затем выполняют лучевой среднезапястный (MC-R) порт дистальнее бугорка Листера на 2 см между третьим и четвертым каналами сухожилий разгибателей. Зажимом по типу москит осуществляют разведение мягких тканей в области портов и формируют доступ к среднезапястному суставу. В среднезапястный локтевой (МС-U) порт вводят оптику диаметром 2,9 мм с наклоном линзы 30°. Через лучевой среднезапястный (MC-R) порт вводят щуп и с использованием артроскопии диагностируют объём и уровень повреждения ладьевидной кости, а также состоятельность связочного аппарата запястья и степень дегенеративных изменений суставов. Затем после удаления щупа в лучевой среднезапястный (МС-R) порт вводят последовательно кусачки, распатор и выполняют резекцию зоны ложного сустава до уровня «жизнеспособной» костной ткани. Размещают в зоне резекции оптику диаметром 2.9 мм с наклоном линзы 30°, которую через лучевой среднезапястный (MC-R) порт вводят до ладонной капсулы кистевого сустава на уровне резекции ложного сустава ладьевидной кости, по ладонной поверхности основания кисти в проекции зоны резекции ложного сустава ладьевидной кости по световой метке артроскопа вдоль лучевого края сухожилия лучевого сгибателя кисти проводят инъекционную иглу с её визуализацией артроскопом. По ходу инъекционной иглы выполняют дополнительный доступ к зоне резекции и через него вводят в зону резекции зажим по типу москит. Раздвигают бранши и осуществляют коррекцию длины и внутриладьевидного угла ладьевидной кости. После этого выполняют антеградное проведение трех спиц по оси ладьевидной кости, выполняют ЭОП-контроль и в зоне резекции через лучевой среднезапястный (MC-R) порт с использованием артроскопической шахты размещают и утрамбовывают с использованием щупа предварительно подготовленный фрагментированный губчатый трансплантат из передней верхней ости подвздошной кости с контрлатеральной стороны пациента. Выполняют наложение накожных швов и резекцию спиц подкожно. Способ позволяет обеспечить надежную коррекцию оси и длины ладьевидной кости кисти, обеспечить коррекцию дорсальной нестабильности промежуточного фрагмента костей запястья, обеспечить сохранение васкуляризации и проприоцепции кистевого сустава, а также обеспечить достаточное повышение качества жизни пациента. 1 пр. Подробнее
Дата
2019-11-01
Патентообладатели
"Федеральное государственное бюджетное учреждение ""Национальный медицинский исследовательский центр травматологии и ортопедии имени Н.Н. Приорова"" Министерства здравоохранения Российской Федерации "
Авторы
Голубев Игорь Олегович , Балюра Григорий Григорьевич , Кутепов Илья Александрович
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ПРОТИВОИЗНОСНЫХ ПРИСАДОК НА ОСНОВЕ ЖИРНЫХ КИСЛОТ В ДИЗЕЛЬНЫХ ТОПЛИВАХ / RU 02723974 C1 20200618/
Открыть
Описание
Изобретение относится к области контроля качества дизельных топлив, преимущественно для определения противоизносных присадок на основе жирных кислот. Способ определения количества противоизносной присадки на основе жирных кислот в дизельных топливах включает отбор пробы, ИК-спектрометрирование и последующее определение концентрации присадки по градуировочному графику, построенному в координатах высота пика на волновом числе 1710 см-1 - концентрация присадки, перед ИК-спектрометрированием хроматографическую колонку заполняют 1 г сорбента, в качестве которого используют силикагель, с размером частиц 40-100 мкм, диаметром пор 60 , смачивают гексаном и пропускают 50 см3 пробы топлива, создавая разрежение 13-40 мбар, после чего дополнительно последовательно пропускают через сорбент 2 см3 гексана, затем 10 см3 этанола, собирая экстракты в разные емкости, экстракт после пропускания этанола выдерживают при температуре 50-60°С и вакууме 10-15 мбар в течение 5 мин, по окончании которых доводят до объема 5 см3 тетрахлорметаном и полученный раствор подвергают ИК-спектрометрированию. Техническим результатом изобретения является расширение номенклатуры способов определения присадок в дизельных топливах. 1 ил., 10 табл. Подробнее
Дата
2019-10-30
Патентообладатели
"Федеральное автономное учреждение ""25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации"" "
Авторы
Шарин Евгений Алексеевич , Чернышева Анна Владимировна , Щербаков Павел Юрьевич
Способ измерения теплового сопротивления переход-корпус силовых полупроводниковых приборов / RU 02724148 C1 20200622/
Открыть
Описание
Изобретение относится к контрольно-измерительной технике, в частности к технике измерения тепловых параметров силовых полупроводниковых приборов (СПП) в корпусном исполнении. Технический результат - обеспечение неразрушающего контроля теплового сопротивления переход- корпус СПП, сокращение времени измерения и в конечном итоге повышение выхода годности изделий в технологическом цикле их серийного производства. Сущность: полупроводниковый кристалл нагревают путем пропускания через него постоянного тока заданной амплитуды I. В процессе нагрева измеряют величину I и падение напряжения U на испытуемом приборе. Величину греющей мощности Р вычисляют по выражению Р=IU. По истечении времени t, равного утроенному значению тепловой постоянной конструкции прибора t=3τT, источник греющего тока отключают. Одновременно подключают источник измерительного тока и измеряют величину термочувствительного параметра в момент отключения источника греющего тока, в качестве которого используют прямое падение напряжения на кристалле Unp1. По истечении времени t=3τT по окончании процесса естественного перераспределения накопленного полупроводниковым кристаллом тепла по структуре конструкции прибора, включая массивное тело основания корпуса прибора, производят повторное измерение величины термочувствительного параметра Unp2. По полученным значениям рассчитывают разность Unp1-Unp2 и определяют разность между температурами перехода и корпуса испытуемого прибора KT⋅(Unp1-Unp2)=TJ-TC, где KT - величина температурного коэффициента прямого напряжения. Величину теплового сопротивления переход-корпус Rthjc рассчитывают как отношение полученных значений TJ-TC и мощности Р. 8 ил. Подробнее
Дата
2019-10-28
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Ставропольский государственный аграрный университет"" "
Авторы
Ершов Андрей Борисович , Хорольский Владимир Яковлевич , Байрамалиев Султан Шарифидинович
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ АНИЗОТРОПНЫХ ДИЭЛЕКТРИКОВ / RU 02721472 C1 20200519/
Открыть
Описание
Изобретение относится к области электротехники, в частности к способу определения диэлектрической проницаемости анизотропных диэлектриков, и может быть использовано при контроле качества твердых диэлектрических материалов и покрытий. Способ измерения диэлектрической проницаемости материалов включает облучение диэлектрического образца электромагнитной волной за счет возбуждения несимметричной волны Н01р в круглом волноводе, в котором располагают диэлектрический образец, выполненный в виде пластины, ортогонально продольной оси круглого волновода, при этом диэлектрический образец размещают на металлической подложке и последовательно возбуждают в нем радиальные поверхностные электромагнитные волны на двух близких длинах волн генератора λ1 и λ2 при условии, что (λ2-λ1)/λ1<<1, измеряют значения коэффициента затухания каждой их двух поверхностных волн над диэлектрическим образцом в точках вдоль всей длины окружности, с центром, совпадающим с точкой возбуждения радиальных поверхностных волн, с шагом в зависимости от количество точек измерения коэффициента затухания, по длине окружности для каждой длины волны, находят максимальное и минимальное значения коэффициентов затухания направления двух главных осей поперечной анизотропии исследуемого материала и проводят определение значений диэлектрической проницаемости поперечных компонент тензора диэлектрической проницаемости εх, εу и его нормальной компоненты εz путем решения системы дисперсионных уравнений. Повышение точности измерений поперечной анизотропии диэлектрических материалов является техническим результатом изобретения. 2 ил. Подробнее
Дата
2019-10-28
Патентообладатели
"Федеральное государственное казенное образовательное учреждение высшего образования ""Военный учебно-научный центр Военно-воздушных сил ""Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина"" Министерства обороны Российской Федерации "
Авторы
Казьмин Александр Игоревич , Федюнин Павел Александрович , Федюнин Дмитрий Павлович