Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ ВВ ПРИ ТЕРМИЧЕСКИХ ВОЗДЕЙСТВИЯХ / RU 02724884 C1 20200626/
Открыть
Описание
Изобретение относится к области измерительной техники и может быть использовано для регистрации режима взрывчатого превращения взрывчатых веществ (ВВ) (наличия или отсутствия детонационного режима взрывчатого превращения ВВ) и определения давления на фронте детонационной волны при взрыве относительно малой навески ВВ (0,2÷2 г) в результате его нагрева, например, при проведении научно-исследовательских работ. Предложено устройство определения параметров взрывчатого превращения при термических воздействиях, содержащее корпус, в котором в определенной последовательности установлены образец ВВ, втулка, нагревательное устройство, термопара, измерительные приборы, соединенные с приборами, преобразующими и обрабатывающими измерительные сигналы. Нагревательное устройство установлено на торцевой поверхности корпуса, корпус выполнен составным с образованием полости, в которой установлена чаша с образцом ВВ, закрытая крышкой, имеющей кольцевую проточку закрепления термопары, проходящей в осевом канале нагревательного элемента, установленного в верхней части корпуса, в нижней части корпуса соосно с образцом ВВ установлена втулка измерительная, прижатая одним концом к чаше, в которой размещены чувствительные элементы, к дну чаши прижата метаемая стальная пластинка, соразмерная отверстию втулки, при этом толщина стенки чаши выбрана из соотношения: 20 мм/г>δст/Мвв>15 мм/г, где δст - толщина стенки чаши со стороны втулки измерительной, Мвв - масса ВВ в тротиловом эквиваленте. Технический результат - получение конструктивно простого устройства, позволяющего регистрировать факт возникновения детонации в ВВ в условиях нагрева и определения давления на фронте детонации, обеспечивающего преимущественно односторонний нагрев ВВ, изменение режима нагрева в широком диапазоне, включая высокие скорости нарастания температуры, изменение давления разрушения реакционной камеры, степени заполнения реакционной камеры и условия отвода продуктов разложения. 4 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-12-25
Патентообладатели
"Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии ""Росатом"" , Федеральное государственное унитарное предприятие ""Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики"" "
Авторы
Игнатов Олег Леонидович , Комиссаров Александр Викторович , Краснов Дмитрий Валериянович
Устройство для внешней дефектоскопии подводных вертикальных гидротехнических сооружений / RU 02724156 C1 20200622/
Открыть
Описание
Изобретение относится к области подводной техники, используемой для обслуживания и периодического осмотра поверхностей подводной части гидротехнической инфраструктуры, а именно к телеуправляемым подводным робототехническим системам, обеспечивающим высокоточное обследование, в том числе с применением методов неразрушающего контроля, профилирование подводных протяженных, преимущественно вертикально расположенных поверхностей объектов. Создано устройство для внешней дефектоскопии подводных вертикальных гидротехнических сооружений, содержащее последовательное тросовое соединение якоря, подвижного носителя и плавающего буя, создавая тросовую линию. При этом якорь и плавающий буй размещены на концах тросовой линии, а плавающий буй снабжен блоком управления, аккумуляторной батареей, согласованной парой горизонтальных движителей, модулем навигации глобальной спутниковой системы позиционирования и антенной Wi-Fi, предназначенной для передачи гидроакустической информации оператору и приема от него управляющих команд. Причем аккумуляторная батарея, модуль навигации глобальной спутниковой системы позиционирования и антенна Wi-Fi соединены с входами блока управления, а пара горизонтальных движителей буя соединена с выходами блока управления. Подвижный носитель установлен на тросе с возможностью движения по тросовой линии и снабжен гидролокатором с переключаемой рабочей частотой, центральным управляющим компьютером, инерциальной измерительной системой, вертикальным движителем для вертикального движения подвижного носителя и согласованной парой горизонтальных движителей, предназначенных для углового ориентирования подвижного носителя вокруг вертикальной оси тросовой линии. При этом центральный управляющий компьютер выполнен с возможностью принятия команд от блока управления через многожильный подводный кабель и выработки команд управления через соединенные с ним электрически вертикальный движитель, согласованную пару движителей подвижного носителя, инерционную измерительную систему и гидролокатор с переключаемой рабочей частотой, который также соединен через многожильный подводный кабель с блоком управления и антенной Wi-Fi. Технический результат заявленного изобретения заключается в расширении арсенала технических средств, предназначенных для внешней дефектоскопии подводных вертикальных гидротехнических сооружений с высокой детализацией изображения при выполнении съемки на глубине, а также возможности более точной привязки изображения к объекту. 4 ил. Подробнее
Дата
2019-12-18
Патентообладатели
"Общество с ограниченной ответственностью Научно-производственное предприятие ""Форт XXI"" "
Авторы
Дунчевская Светлана Викторовна , Сторожев Петр Петрович , Дьяконов Михаил Васильевич , Оленин Антон Леонидович
УСТРОЙСТВО ДЛЯ ПРОВЕДЕНИЯ ПРОЧНОСТНЫХ ИСПЫТАНИЙ И ПРОВЕРКИ ГЕРМЕТИЧНОСТИ ГЛУБОКОВОДНОГО ТЕХНИЧЕСКОГО ОБЪЕКТА, ПРЕДНАЗНАЧЕННОГО ДЛЯ ЭКСПЛУАТАЦИИ НА ГЛУБИНАХ ДО 11,5 КМ, ВНЕШНИМ ГИДРОСТАТИЧЕСКИМ ДАВЛЕНИЕМ / RU 02723634 C1 20200618/
Открыть
Описание
Изобретение относится к области испытательной техники, а именно к средствам для проведения испытаний технических объектов внешним гидростатическим давлением для определения их физических параметров. Устройство содержит заполняемые жидкостью внешнюю гидробарическую камеру высокого давления, имеющую находящийся в ее верхней части герметично закрываемый крышкой технологический проем, и размещенную в ней внутреннюю гидробарическую камеру высокого давления, в которой располагается испытуемый объект, выполненную в виде прочной разъемной оболочечной капсулы высокого давления, также имеющей размещенный в ее верхней части герметично закрываемый крышкой технологический проем, нижняя часть которой имеет форму цилиндра с торцом сферообразной формы, причем оболочечная капсула высокого давления с расположенным в ней испытуемым объектом содержит свободный объем, заполняемый жидкостью или жидкостью совместно с практически несжимаемыми телами. В упомянутых камерах размещены измерительные датчики, соединенные герметично проведенными линиями связи с регистрирующей аппаратурой, а их полости сообщены герметично вставленными в крышки проемов трубопроводами с гидронасосами высокого гидростатического давления для подачи в камеры жидкости и изменения в них гидростатического давления в процессе прочностных испытаний, по изобретению верхняя часть разъемной оболочечной капсулы высокого давления выполнена в виде усеченной конической оболочки, герметично установленной на кольцевой опоре, размещенной на круговом буртике прилива, образованного на внутренней поверхности стенки нижней части оболочечной капсулы. С наружной стороны упомянутая часть капсулы зафиксирована разрезной кольцевой шпонкой в виде совокупности отдельных сегментов, имеющей повышенную твердость и прочность по сравнению со стенками корпуса оболочечной капсулы. Крышка технологического проема первичной камеры высокого давления выполнена в виде затворного устройства, к которому подвешена на прочных связях верхняя часть оболочечной капсулы. Размещенный в верхней части оболочечной капсулы технологический проем оснащен люком, герметично закрываемым снизу усиленной крышкой, выдерживающей высокое давление изнутри капсулы и выполненной в виде сферического сегмента, которая оборудована удерживающими ее с наружной стороны тягами, прикрепленными к верхнему торцу усеченной конической оболочки. Полость вторичной испытательной камеры высокого давления сообщена трубчатой магистралью с атмосферой через установленный в магистрали аварийный клапан, предусмотренный на выдерживание повышенного расчетного давления, создаваемого в полости оболочечной капсулы. В нижней части разъемной оболочечной капсулы, на внутренней стороне ее стенки, установлен ряд подкрепляющих стенку корпуса оболочечной капсулы круговых силовых колец. Технический результат: повышение прочности и устойчивости оболочечной капсулы - вторичной камеры высокого давления - и предотвращение возможности динамического воздействия на оболочечную капсулу давления внутри первичной камеры высокого давления. 2 ил. Подробнее
Дата
2019-12-18
Патентообладатели
"Федеральное государственное унитарное предприятие ""Крыловский государственный научный центр"" "
Авторы
Балдычев Владимир Сергеевич , Линёв Дмитрий Валерьевич , Осипенко Виктор Владимирович , Тумашик Глеб Александрович
УСТРОЙСТВО ЗАЩИТЫ ОТ ЗАМЫКАНИЙ В ОБМОТКАХ ОДНОФАЗНОГО ТРАНСФОРМАТОРА / RU 02720946 C1 20200515/
Открыть
Описание
Использование: в области электроэнергетики для защиты трансформаторов от замыканий в его обмотках. Технический результат - повышение чувствительности устройства защиты к витковым замыканиям в обмотках однофазного трансформатора за счет возможности вращения цилиндрической катушки индуктивности измерительного преобразователя вокруг ее смещенной оси. Измерительный преобразователь выполняется в виде цилиндрической со смещенной осью вращения катушки индуктивности, смещенная ось которой закреплена в подшипниках так, чтобы она была параллельна осям стержней сердечника трансформатора и находилась на одинаковом расстоянии от этих осей, при этом на одном из концов этой оси закреплен регулирующий рычаг, а параллельно катушке индуктивности реагирующего органа через разомкнутые контакты кнопки управления подключен измерительный прибор. 1 ил. Подробнее
Дата
2019-12-13
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Омский государственный технический университет"" "
Авторы
Новожилов Тимофей Александрович
АВТОМАТИЧЕСКИЙ КАЛИБРАТОР КАНАЛОВ ИЗМЕРЕНИЯ ПРИРАЩЕНИЯ СОПРОТИВЛЕНИЯ ТЕНЗОРЕЗИСТОРОВ МНОГОКАНАЛЬНОЙ ИЗМЕРИТЕЛЬНОЙ СИСТЕМЫ / RU 02724450 C1 20200623/
Открыть
Описание
Изобретение относится к измерительной технике и предназначено для формирования в автоматическом режиме заданного количества дискретных величин приращения сопротивления относительно номинального сопротивления тензорезисторов при проведении с требуемою точностью метрологических исследований, поверки и калибровки каналов измерения сигналов тензорезисторов быстродействующих измерительных систем. Автоматический калибратор каналов измерения приращения сопротивления тензорезисторов многоканальной измерительной системы содержит имитатор сигналов, в состав которого входят два коммутатора и формирователь ступеней приращения сопротивления, содержащий две цепи из последовательно соединенных резисторов, при этом одна цепь состоит из m резисторов и имеет m+1 выводов, вторая цепь состоит из n резисторов и имеет n+1 выводов, выходы каждого коммутатора объединены и представляют измерительный вывод автоматического калибратора, и устройство управления, содержащее логические элементы ИЛИ и И, формирователь сигнала «установка нуля», двоичные счетчики и дешифраторы. Дополнительно в формирователе ступеней приращений сопротивления включен опорный резистор, к которому с одной стороны подключена цепь из m резисторов, а с другой стороны подключена цепь из n резисторов, причем выходы этих цепей являются первым и вторым токовыми выводами автоматического калибратора. Техническим результатом изобретения является расширение функциональных возможностей автоматического калибратора. Применение данного изобретения позволит формировать в автоматическом калибраторе необходимое количество (более 20) ступеней приращения сопротивления тензорезистора и обеспечит возможность проведения в автоматическом режиме и с заданной точностью метрологических исследований, поверки и калибровки каналов измерения приращения сопротивления тензорезисторов быстродействующих измерительных систем. 1 ил. Подробнее
Дата
2019-12-11
Патентообладатели
"Федеральное государственное унитарное предприятие ""Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского"" "
Авторы
Витютин Геннадий Андреевич , Загидуллин Шамиль Магамедович , Зубов Евгений Георгиевич , Лихачев Михаил Юрьевич
УСТРОЙСТВО УПРАВЛЕНИЯ АВТОНОМНЫМ АСИНХРОННЫМ ГЕНЕРАТОРОМ / RU 02722689 C1 20200603/
Открыть
Описание
Изобретение относится к электротехнике, в частности к устройству управления автономным асинхронным генератором. Техническим результатом является точное и быстрое определение величины подключаемой нагрузки и точное определение значению величины емкости форсирующих конденсаторов, повышение динамической устойчивости асинхронного генератора, уменьшение длительности переходных процессов и повышение качества электроэнергии. Устройство управления автономным асинхронным генератором, его силовая часть (фиг. 1) содержит асинхронный генератор (1) с тремя фазными обмотками U, V, W, соединенными в генераторе (1) общей точкой - нейтралью N и одноименно выведенным проводом. К фазным обмоткам и нейтрали U, V, W, N присоединены конденсаторы (2) самовозбуждения асинхронного генератора (1), имеющие малую емкость. К фазным обмоткам и нейтрали U, V, W, N одним концом присоединены блоки фазных форсирующих конденсаторов (3), обеспечивающие дополнительное возбуждение асинхронного генератора (1) при подключении нагрузки. Коммутация других концов блоков фазных форсирующих конденсаторов (3) осуществляется блоками трехфазных электронных ключей (4) к фазам U, V, W асинхронного генератора (1). В блоках трехфазных электронных ключей (4) в качестве ключей используют транзисторные ключи переменного тока. Транзисторные ключи переменного тока в отличие от тиристоров обеспечивают включение и выключение в требуемые моменты времени. Управление блоками электронных ключей (4) выполняется по цепям управления ключами (5) системой управления (6). Возможно независимое управление каждым ключом переменного тока в блоке трехфазных электронных ключей (4). Блоков фазных форсирующих конденсаторов (3) и блоков электронных ключей (4) может быть несколько в зависимости от мощности асинхронного генератора (1) и требуемой точности регулирования напряжения. Контроль фактического напряжения генератора (1) осуществляется в каждой фазе U, V, W, и их значения по цепям контроля напряжения (7) передаются в систему управления (6). В каждой фазе асинхронного генератора (1) установлены трансформаторы тока (8). По первичным обмоткам трансформаторов тока (8) протекают токи нагрузки фаз i1. По вторичным обмоткам трансформаторов тока (8) протекают токи i2 и по цепям (9) контроля тока поступают в систему управления (6). На выходе асинхронного генератора (1) за трансформаторами 8 тока установлен выключатель (10) асинхронного генератора (1). Система управления (6) (фиг. 2) содержит: преобразователь (11) величины напряжения фаз; датчики (12) перехода напряжений фаз через ноль; таймер (13), который синхронизирован с напряжением асинхронного генератора (1), через преобразователь (11) величины напряжения фаз; масштабные преобразователи (14) величины вторичного тока i2u, i2v, i2w трансформаторов тока (8); датчики (15) перехода вторичного тока через ноль каждой фазы; измерительные синхронизированные датчики (16) вторичного тока фаз, синхронизированные таймером (13) с напряжением асинхронного генератора (1); блок (17) вычисления мощности нагрузки, подключенной к асинхронному генератору (1); блок вычисления требуемой емкости (18) блока фазных форсирующих конденсаторов (3); формирователь (19) команд управления блоков электронных ключей (4), синхронизированное с напряжением асинхронного генератора (1); блок питания (20) элементов системы управления (6). 3 ил. Подробнее
Дата
2019-12-05
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Ставропольский государственный аграрный университет"" "
Авторы
Коваленко Владимир Васильевич , Ефанов Алексей Валерьевич , Дудка Виктор Николаевич
СПОСОБ КОНТРОЛЯ КОНИЧЕСКИХ ОТВЕРСТИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ / RU 02720326 C1 20200428/
Открыть
Описание
Изобретение относится к измерительной технике и может быть применено, например, для контроля круглости конических отверстий в производстве топливной аппаратуры дизельных двигателей внутреннего сгорания. Способ контроля конических отверстий включает подачу сжатого воздуха в сопряжение контролируемой детали и калибра, устанавливаемого на посадочную поверхность контролируемой детали. Оцениваемым показателем отклонения формы является круглость поверхности конического отверстия, а для оценки допустимости отклонения применяется продолжительность изменения в заданном интервале давления воздуха в полости устройства над контролируемым коническим отверстием. Устройство для осуществления способа контроля конических отверстий включает систему подачи сжатого воздуха к контролируемой поверхности, калибр и отсчетное устройство, при этом в качестве калибра применяется стальной шарик. Степень точности шарика определяется величиной допуска круглости контролируемого конического отверстия, заданного в конструкторской документации, а отсчетное устройство включает манометр и секундомер. Техническим результатом является упрощение процедуры контроля круглости конических отверстий. 2 н.п. ф-лы, 2 ил., 1 пр. Подробнее
Дата
2019-11-28
Патентообладатели
"Общество с ограниченной ответственностью Управляющая компания ""Алтайский завод прецизионных изделий"" "
Авторы
Звягин Антон Владимирович , Свещинский Владислав Октябревич , Лебедев Анатолий Афанасьевич , Захаров Виктор Иванович , Денисов Олег Спартакович
Способ определения поправок к глубинам, измеренным многолучевым эхолотом при съемке рельефа дна акватории, и устройство для определения поправок к глубинам, измеренным многолучевым эхолотом при съемке рельефа дна акватории / RU 02724366 C1 20200623/
Открыть
Описание
Изобретение относится к области гидрографии, в частности к способам и техническим средствам определения поправок к глубинам, измеренных многолучевым эхолотом при съемке рельефа дна акватории. Техническим результатом является существенное упрощение процесса и уменьшение трудоемкости определения поправок к глубинам, измеренным многолучевым эхолотом по всему его измеряемому диапазону, за счет отсутствия по сравнению с прототипом необходимости использования в заявленном изобретении нормированных измерительных приборов (двух датчиков гидростатического давления и температуры воды) для обеспечения получения метрологических характеристик измеренных эхолотом глубин. Заявленное устройство снабжено вычислительным комплексом для определения искомых глубин и искомых геодезических координат их места, а также искомых поправок к измеренным глубинам, реализующим новые формульные зависимости, вход которого через блок управления соединен с выходами измерительного приемного блока, приемника спутниковой радионавигационной системы типа GPS или «ГЛОНАСС», морской интегрированной малогабаритной системы типа «Кама», датчика скорости распространения звука в воде типа ТЗО-2, а выход его с входом блока определения поправок к глубинам, измеренных многолучевым эхолотом при съемке рельефа дна акватории. 2 н.п. ф-лы, 2 ил. Подробнее
Дата
2019-11-28
Патентообладатели
Чернявец Владимир Васильевич
Авторы
Чернявец Владимир Васильевич
СПОСОБ ИЗМЕРЕНИЯ УГЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ / RU 02721168 C1 20200518/
Открыть
Описание
Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения углов. Устройство для измерения углов содержит основание, соединенное осью с линейкой, выполненной с продольным пазом и угломерной шкалой, основание посредством другой оси соединено с первым концом планки, второй конец планки соединен штифтом со штоком, первый конец шпильки пройдет сквозь отверстие первого корпуса и связан со штоком, второй конец шпильки вкручен в гайку и пройдет через отверстие второго корпуса, первый и второй корпусы установлены на линейке и соединены с ней посредством клея. Способ измерения углов состоит в том, что в угол, образованный основанием и линейкой, вкладывают проверяемую деталь, прижимают к основанию, вращают гайку и уменьшают угол, вращением гайки перемещают шпильку со штоком и штифтом по продольному пазу линейки до соприкосновения проверяемой детали с линейкой и напротив штифта по угломерной шкале определяют размер угла в градусах. Техническим результатом является возможность измерения острых, прямых и тупых углов, как на малогабаритных, так и на крупногабаритных деталях. 2 н.п. ф-лы, 2 ил. Подробнее
Дата
2019-11-26
Патентообладатели
Костяной Игорь Юрьевич
Авторы
Костяной Игорь Юрьевич
КРАН СФЕРИЧЕСКИЙ С РАЗДЕЛИТЕЛЕМ СРЕД / RU 02720907 C1 20200514/
Открыть
Описание
Изобретение относится к запорной арматуре и приборостроению, в частности к кранам, с наличием предохранительных устройств для измерительных приборов. В кране сферическом с разделителем сред корпус выполнен в виде пустотелой прямой с двумя скругленными гранями призмы, оснащенной сквозными отверстиями, оси которых взаино перпендикулярны. Со стороны каждой скругленной грани с корпусом соединен соответственно один из концов штуцера и дополнительного штуцера. Внутри корпуса расположен шток, оснащенный сферой, размещенной между опорных элементов. Последние установлены в соответствующей втулке седла, имеющей возможность контакта с тарельчатой пружиной. При этом на одном конце штока закреплен элемент управления, второй конец штока расположен в проходной пробке, оснащенной сквозным отверстием и закрепленной в отверстии корпуса. Кроме того, штуцер и дополнительный штуцер по наружной и внутренней поверхности выполнены ступенчатыми. На втором конце штуцера установлен стакан с возможностью перемещения. Стакан оснащен с одной стороны заглушкой, с другой стороны отверстием. В отверстии установлена шайба, имеющая возможность контакта с мембраной, расположенной в кольце. На втором конце дополнительного штуцера выполнена наружная резьба. В одной из ступеней штока выполнены выходное и соединительное отверстия. В сфере выполнены взаимосвязанные отверстия, оси которых расположены под углом к горизонтальной плоскости. Изобретение позволяет осуществлять безопасную замену манометра, его защиту от инородных тел, сокращение времени для полного перекрытия среды, предупреждение загрязнения окружающей среды. 4 з.п. ф-лы, 4 ил. Подробнее
Дата
2019-11-22
Патентообладатели
"Общество с ограниченной ответственностью ""АрмРесурс"" "
Авторы
Кривоногов Игорь Анатольевич , Патраков Владислав Дмитриевич , Мальцев Евгений Михайлович
Устройство измерения несущей частоты с использованием паразитных гармоник РЛС / RU 02724119 C1 20200622/
Открыть
Описание
Изобретение относится к измерительной технике и может быть использовано для оперативного измерения несущей частоты непрерывных и импульсных сигналов СВЧ в широком диапазоне частот. Широкополосный измеритель частоты СВЧ-сигналов состоит из первой, второй и третьей линий задержки, первого, второго и третьего фазовых детекторов, решающего устройства. Дополнительно введены частотный разветвитель, первый, второй и третий усилитель-ограничитель, первый, второй и третий полосовой фильтр, первый, второй и третий делители мощности на два. Техническим результатом изобретения является уменьшение габаритных размеров и массы при сохранении точности измерения частоты за счет использования паразитных гармоник радиолокационных станций (РЛС) и замены длинных линий задержки на короткие. 2 ил. Подробнее
Дата
2019-11-21
Патентообладатели
Аткишкин Сергей Федорович
Авторы
Аткишкин Сергей Федорович
Способ автоматизированного контроля сплошности изделий и устройство для его осуществления / RU 02720437 C1 20200429/
Открыть
Описание
Изобретение относится к области измерительной техники и может быть использовано для оценки надежности и качества различных изделий. Способ включает размещение на изделии в начале траектории сканирования эталонного дефекта, соответствующего по характеристикам реальному дефекту в изделии и имеющего размеры, соответствующие минимально возможным размерам дефекта в изделии, измерение перед проведением контроля величины сигнала на изделии на расстоянии не более размера минимального дефекта, измерение величины изменения сигнала на эталонном дефекте, установку величины порогового сигнала для выявления дефектов в изделии, двухмерное сканирование в координатах х, у поверхности контролируемого объекта по траектории возвратно-поступательного движения датчиком излучения физического поля с шагом Δх, Δу, воздействие на изделие в процессе сканирования физическим полем в виде импульсного сигнала с частотой fи, измерение величины сигналов излучения физического поля после взаимодействия с изделием с каждой точки поверхности изделия, регистрацию дефектов путем сравнения текущего значения сигнала по траектории сканирования с значением пороговым сигнала. Согласно изобретению, при обнаружении дефекта увеличивают частоту импульсов воздействия физическим полем и уменьшают шаг сканирования. После выхода за границы j-го дефекта частоту импульсов и шаг сканирования снижают. Для осуществления способа используют устройство для автоматизированного контроля сплошности изделий. Технический результат - обеспечение оперативного достоверного контроля сплошности многослойных сложных конструкций и их элементов в процессе производства и в реальных условиях эксплуатации, т.е. снижение погрешности определения границ и местоположения дефектных участков без снижения производительности контроля. 2 н. и 1 з.п. ф-лы, 18 ил., 2 табл. Подробнее
Дата
2019-11-11
Патентообладатели
"Акционерное общество ""Дзержинское производственное объединение ""Пластик"" "
Авторы
Караваев Юрий Александрович
Способ определения погрешности стенда для измерения характеристик геометрии масс изделий и устройство для его осуществления / RU 02722962 C1 20200605/
Открыть
Описание
Изобретение относится к области измерительной техники и может быть использовано для подтверждения метрологических характеристик при поверке, калибровке, испытаниях в целях утверждения типа стендов для измерения характеристик геометрии масс изделий с помощью статической балансировки, взвешивания, наклонов, колебаний, в том числе выполненных в виде унифилярного подвеса или физического маятника. Способ включает определение на стенде значений характеристик выбранных конфигураций эталонного устройства и расчет погрешности стенда на основании сравнения определенных на стенде значений характеристик эталонного устройства с их номинальными значениями. При этом при определении номинальных значений характеристик геометрии масс эталонного устройства дополнительно измеряют отклонения формы всех модулей и геометрические размеры крепежных элементов, определяют координаты центра масс некоторых конфигураций балансировкой с последующим введением поправки на неоднородность материала и рассчитывают погрешность эталонного устройства из-за отклонения формы модулей и введения поправки на неоднородность материала. Устройство для определения погрешности стенда для измерения характеристик геометрии масс изделий содержит эталонные модули трех типов - сегмент, диск и смещающий груз. Все отверстия в модулях под крепежные элементы выполнены сквозными без фасок, недорезов и проточек. Центральное тело выполнено разборным и состоит из оснащенных балансировочными штифтами сегментов, имеющих форму полых цилиндров. Базовые конфигурации эталонного устройства состоят из сегментов диаметром d и установленных на них дисках диаметром D с соотношением D/d≤1,5. Смещающие грузы выполнены с возможностью жесткого крепления друг к другу и к рабочему столу стенда. Крепежные элементы могут быть выполнены в виде болтов и гаек с головками цилиндрической формы с двумя цилиндрическими отверстиями под ключ. Технический результат заключается в обеспечении прослеживаемости единиц величин к государственным первичным эталонам, испытаний в целях утверждения типа, поверки или калибровки стендов, а также повышении точности и достоверности контроля. 2 н. и 1 з.п. ф-лы, 4 ил. Подробнее
Дата
2019-11-08
Патентообладатели
"Федеральное государственное унитарное предприятие ""Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского"" "
Авторы
Куликов Александр Андреевич , Лютов Владимир Васильевич , Довыденко Ольга Владимировна , Самойленко Александр Иванович , Бугров Александр Юрьевич
Стенд для испытаний датчиков цели взрывательных устройств / RU 02716073 C1 20200305/
Открыть
Описание
Изобретение относится к области испытания боеприпасов, конкретно - контактных датчиков цели различных взрывательных устройств (ДЦ ВУ) инженерных боеприпасов (ИБ) наземного применения. Техническим результатом является обеспечение возможности безопасного проведения испытаний различных типов ДЦ ВУ на всех стадиях их жизненного цикла с ускоренным процессом обработки результатов и повышенной степенью точности измерений. Технический результат достигается тем, что стенд для испытания датчиков цели взрывательных устройств содержит несущую металлоконструкцию, связанную с ней опорную плиту для размещения испытываемого изделия, механизм нагружения и комплект измерительных устройств, включающий устройства измерения усилий и перемещений, при этом фронтальная часть несущей металлоконструкции выполнена из бронелиста, связанная с ней опорная плита выполнена с возможностью регулируемого поворота относительно горизонтальной оси посредством закрепления на удлиняющих элементах системы параллельных рычагов, установленных на общем валу, приводимом во вращение посредством дополнительного рычага, соединенного с линейным механическим актуатором/штоком устройства измерения усилий, механизм нагружения выполнен в виде тонкостенной емкости, снабженной трубопроводными линиями с соответствующими регулирующими клапанами для наполнения/опорожнения жидкостью, устройство измерения перемещений выполнено в виде измерителя угла отклонения опорной плиты от горизонтали, а комплект измерительных устройств дополнительно содержит звукозаписывающую аппаратуру и скоростную фоторегистрирующую аппаратуру. 6 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-11-05
Патентообладатели
"Федеральное казенное предприятие ""Научно-исследовательский институт ""Геодезия"" "
Авторы
Колтунов Владимир Валентинович , Заборовский Александр Дмитриевич , Фурсов Юрий Серафимович , Ломакин Евгений Александрович , Пизаев Артем Олегович , Виноградов Анатолий Валентинович
Устройство для определения усилий на рабочий орган сельскохозяйственных машин / RU 02722872 C1 20200604/
Открыть
Описание
Изобретение относится к области сельскохозяйственного машиностроения, в частности к конструкциям измерительных средств для изучения тягового сопротивления и нагруженности рабочих органов почвообрабатывающих орудий, преимущественно с использованием почвенных каналов. Заявленное устройство для определения усилий на рабочий орган сельскохозяйственных машин со стороны почвы включает почвенный канал с подвижным рабочим органом, установленным на тележке с рамой, и закрепленные на промежуточной прямоугольной рамке измерительные звенья, при этом измерительные звенья выполнены в виде колец прямоугольного сечения, снабженных диаметрально расположенными присоединительными элементами, перпендикулярно плоскости которых закреплены тензорезисторы, одни концы присоединительных элементов всех измерительных звеньев шарнирно закреплены на дополнительной рамке, а вторые - на раме, причем вторые концы вертикально расположенных измерительных звеньев прикреплены к раме посредством жестко закрепленных на ней арок, при этом геометрические размеры измерительных колец выбраны из соотношения ! ! где ε - деформация тензорезисторов при наибольшей измеряемой нагрузке; Р - измеряемое усилие, Н; Е - модуль упругости материала кольца, Па; b - ширина сечения кольца, м; h - высота сечения кольца, м; R - средний радиус кольца, м. Технический результат заключается в повышении точности измерения усилий навесных сельскохозяйственных машин и орудий в трех направлениях. 2 ил. Подробнее
Дата
2019-10-28
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Волгоградский государственный аграрный университет"" "
Авторы
Рогачев Алексей Фруминович , Карсаков Анатолий Андреевич , Цепляев Алексей Николаевич , Полторынкин Сергей Сергеевич
ЛАЗЕРНЫЙ ДАЛЬНОМЕР / RU 02720268 C1 20200428/
Открыть
Описание
Изобретение относится к измерительной технике, для измерения расстояния до различных предметов. В лазерный дальномер входит задающий генератор с устройством синхронизации, который формирует непрерывную серию псевдослучайных последовательностей в виде электрических импульсов, поступающих на лазерный источник излучения, после которого светоделительный куб формирует опорный и рабочий оптические сигналы, где рабочий сигнал распространяется по передающему каналу через оптический разветвитель, оптоволокно и волоконно-оптический коллиматор, достигает исследуемого объекта и возвращается обратно через оптический разветвитель в приемный канал, состоящий из одного приемника излучения, в то время как опорный сигнал проходит через оптическую линию задержки, второй приемник излучения, цифровую линию задержки, поступает вместе с сигналом приемного канала на блок корреляционной обработки данных, после которого вычисляется текущее расстояние до исследуемого объекта. Технический результат: сохранение динамического диапазона лазерного дальномера с повышением точности измерений. 2 з.п. ф-лы, 1 ил. Подробнее
Дата
2019-10-28
Патентообладатели
"Федеральное государственное унитарное предприятие ""Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений"" "
Авторы
Блинов Игорь Юрьевич , Хатырев Николай Петрович , Раков Антон Андреевич
Способ и устройство контролируемого СВЧ-нагрева / RU 02720127 C1 20200424/
Открыть
Описание
Настоящее изобретение относится к области пищевой, химической и смежными с ними отраслями промышленности и может быть использовано при контролируемой обработке пищевого продукта токами сверхвысокой частоты. Устройство контролируемого СВЧ-нагрева пищевого продукта состоит из камеры нагрева (202) с установленным в ней измерительным модулем (205), выполненным с возможностью измерения инфракрасного излучения на различных участках поверхности размещаемого внутри камеры нагрева (202) пищевого продукта (201), и контрольного модуля (204), при этом камера нагрева (202) снабжена источником СВЧ-поля, при этом измерительный модуль (205) состоит из нескольких измерительных сегментов, контрольный модуль (204) выполнен с возможностью приема значений от каждого из сегментов измерительного модуля и управления включением источника СВЧ-поля так, чтобы источник был включен при условии, что при последнем измерении все измеренные значения ИК-излучения на сегментах измерительного модуля меньше первого контролируемого значения и при условии, что разность между наибольшим и наименьшим измеренными значениями на таких сегментах меньше второго контролируемого значения, и был отключен, если одно из упомянутых условий или оба условия не выполнены. Технический результат - обеспечение равномерности нагрева продукта в СВЧ-поле. 2 н. и 12 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-10-21
Патентообладатели
"Общество с ограниченной ответственностью ""МАЙ"" "
Авторы
Лисиненко Игорь Васильевич , Лисиненко Ирина Николаевна
ГАЗООБМЕННЫЙ ФИЛЬТР С ФУНКЦИЕЙ ОГНЕПРЕГРАДИТЕЛЯ И ВЗРЫВОЗАЩИТЫ / RU 02714544 C1 20200218/
Открыть
Описание
Изобретение относится к промышленным устройствам, предназначенным для применения в конструкции взрывозащищенных газоанализаторов и сенсоров, и может быть использовано для защиты газовых сенсоров от пыли, турбулентных потоков газа, а также в качестве огнепреградителя и элемента взрывозащиты. Фильтр состоит из корпуса 1, двух внешних перфорированных дисков 2, внутреннего диска 3 и мелкоячеистой сетки 4 (выполненной из латуни или нержавеющей стали), проложенной между дисками. Отверстия в дисках выполнены так, что при наложении дисков совпадение отверстий исключено, корпус выполнен в виде гайки с резьбой. Корпус наворачивается на стальную трубку, содержащую газовый сенсор. При воспламенении взрывоопасной газовой смеси фильтр обеспечивает защиту окружающей среды от проникновения продуктов горения и взрыва за пределы устройства, содержащего газовый сенсор. В нормальном режиме работы фильтр обеспечивает защиту газового сенсора от пыли и турбулентных потоков. Технический результат - повышение эффективности взрывозащиты при сохранении скорости газообмена, необходимой для нормальной работы газочувствительных сенсоров, снижение ударных динамических нагрузок на защищаемую устройством контрольно-измерительную аппаратуру с сохранением ее работоспособности после пожара и взрывного воздействия. 5 ил. Подробнее
Дата
2019-10-17
Патентообладатели
"Общество с ограниченной ответственностью ""Центр Инновационных Технологий-Плюс"" "
Авторы
Конюхов Андрей Иванович , Юдаков Михаил Александрович , Алексеев Виктор Валерьевич , Пластун Александр Сергеевич
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЯРКОСТНОЙ ТЕМПЕРАТУРЫ / RU 02718727 C1 20200414/
Открыть
Описание
Изобретение относится к области измерительной техники и касается устройства для измерения яркостной температуры. Устройство содержит опорный источник излучения, две оптические диафрагмы, оптическую фокусирующую систему, полосовой оптический фильтр, фотодиодный приемник и фемтоамперметр. Опорный источник излучения образован лазерным излучателем и интегрирующей сферой. Первая диафрагма установлена вплотную к выходному порту интегрирующей сферы. Вторая диафрагма установлена вплотную к входному порту фотодиодного приемника. Полосовой оптический фильтр установлен вблизи или вплотную ко второй диафрагме со стороны первой диафрагмы. Оптическая фокусирующая система обеспечивает поочередное фокусирование излучения от выходного порта интегрирующей сферы и от исследуемого объекта на фотодиодный приемник. Технический результат заключается в повышении точности измерений. 1 ил. Подробнее
Дата
2019-10-16
Патентообладатели
"Федеральное государственное унитарное предприятие ""Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева"" "
Авторы
Ходунков Вячеслав Петрович , Походун Анатолий Иванович , Сильд Юрий Альфредович , Фуксов Виктор Маркович
Система организации нерегулируемого пешеходного перехода / RU 02709296 C1 20191217/
Открыть
Описание
Изобретение относится к сигнальным дорожным системам. Система организации нерегулируемого пешеходного перехода состоит из дорожных знаков пешеходного перехода, дополнительных дорожных знаков пешеходного перехода, устройства для освещения пешеходного перехода, по меньшей мере, из двух сенсорных устройств и из двух исполнительных модулей. При этом каждое сенсорное устройство содержит датчик обнаружения пешеходов и сенсорный модуль, включающий в качестве его элементов программируемое логическое устройство, связанное с приемопередатчиком, внутренней системой питания и измерительными датчиками. При этом программируемое логическое устройство связано с датчиком обнаружения пешеходов, с элементами световой индикации дорожного знака, источником света устройства для освещения пешеходного перехода, а одно из сенсорных устройств в системе содержит коммуникационно-управляющий модуль. Коммуникационно-управляющий модуль содержит в качестве его элементов программируемое логическое устройство и связанные с ним приёмопередатчик, модем сотовой связи GSM/GPRS и внутреннюю систему питания. Программируемое логическое устройство выполнено с возможностью подключения к элементам световой индикации дополнительных дорожных знаков. Достигается повышение эксплуатационных характеристик системы. 5 з.п. ф-лы, 8 ил. Подробнее
Дата
2019-10-15
Патентообладатели
Ли Роберт Владимирович
Авторы
Ли Роберт Владимирович