Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
Препарат для диагностики новообразований методом магнитно-резонансной томографии / RU 02723932 C1 20200618/
Открыть
Описание
Изобретение относится к химико-фармацевтической промышленности и касается препарата для диагностики новообразований методом магнитно-резонансной томографии, выполненный на основе модифицированных наночастиц оксида железа. Препарат в качестве наночастиц содержит продукт, полученный путем нагрева при перемешивании раствора ацетилацетоната железа (III) с концентрацией 48-70 г/л в бензиловом спирте в течение 5-12 ч до температуры 160-205°С и выдерживания при достигнутой температуре в течение 1-60 мин, проводимыми в атмосфере инертного газа, охлаждения смеси в присутствии кислорода с получением суспензии наночастиц Fe2O3, добавления в суспензию водорастворимого полярного органического растворителя, отделения наночастиц, их ресуспендирования в водном растворе щелочи, смешения полученной суспензии с водным щелочным раствором человеческого сывороточного альбумина, инкубирования полученной смеси и ее очистки с последующими добавлением водного раствора глутарового альдегида, инкубированием смеси, добавлением в смесь раствора боргидрида натрия, инкубированием смеси и ее очисткой. Изобретение позволяет в 2 раза повысить продолжительность хранения препарата как в виде суспензии, так и в виде лиофилизата. 4 ил., 4 пр. Подробнее
Дата
2019-07-30
Патентообладатели
Абакумов Максим Артемович , Семкина Алевтина Сергеевна
Авторы
Мажуга Александр Георгиевич , Абакумов Максим Артемович , Семкина Алевтина Сергеевна , Чехонин Владимир Павлович
ЗАГУСТИТЕЛЬ ВОДНОГО РАСТВОРА КИСЛОТЫ И/ИЛИ СОЛИ, СПОСОБ ЗАГУЩЕНИЯ ВОДНОГО РАСТВОРА КИСЛОТЫ И/ИЛИ СОЛИ И СПОСОБ ДОБЫЧИ НЕФТИ С ПРИМЕНЕНИЕМ УКАЗАННОГО ЗАГУСТИТЕЛЯ, НАБОР КОМПОНЕНТОВ ДЛЯ ЗАГУЩЕНИЯ ВОДНОГО РАСТВОРА КИСЛОТЫ И/ИЛИ СОЛИ И КОМПОЗИЦИЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ КИСЛОТНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА, ВКЛЮЧАЮЩИЕ УКАЗАННЫЙ ЗАГУСТИТЕЛЬ / RU 02715001 C2 20200221/
Открыть
Описание
Изобретение относится к загущению водных растворов кислот и солей и применению загущенного раствора для гидравлического разрыва пласта. Технический результат - повышение эффективности переноса пропанта в течение длительного промежутка времени, повышение эффективности извлечения углеводородов из пласта. Применение комбинации: а) цвиттерионного соединения формулы I ! , ! где R представляет собой насыщенный, моно-, ди- или триненасыщенный углеводородный радикал С9-С25; R1 представляет собой -СOO- или -CH2COO-; R2, R3, R4, R5 независимо представляют собой водород, метил, этил, пропил, изопропил, аллил, винил, фенил или бензил; б) соединения, выбранного из группы, состоящей из диэтаноламидов жирных кислот фракции С10-С20, алкилдиметиламиноксида, гидроксиэтилалкилимидазола, бутилгликоля, коричного альдегида и оксикоричных кислот; и в) необязательно, преобразователя железа для загущения водного раствора кислоты и/или соли. 5 н. и 20 з.п. ф-лы, 8 ил., 9 табл. Подробнее
Дата
2019-07-29
Патентообладатели
Терещенко Александр Владимирович
Авторы
Терещенко Александр Владимирович , Болотов Виталий Сергеевич
ТРАНСДЕРМАЛЬНЫЙ ПЛАСТЫРЬ / RU 02705896 C1 20191112/
Открыть
Описание
Настоящее изобретение относится к области медицины, в частности к трансдермальному пластырю для сорбции и выведения частиц тяжелых металлов и токсинов из организма человека. Трансдермальный пластырь содержит основу, выполненную из текстильного материала, на которую нанесен клеевой слой, магнитную подложку поверх клеевого слоя, с нанесенным на нее слоем магнитных наночастиц оксида железа Fe3O4 и/или γ-Fe2O3, и защитный слой отрывного материала, размещенный на фиксирующем проницаемом слое. Слой наночастиц равномерно распылен по поверхности клеевой основы в соотношении 20–60 г/м2. Трансдермальный пластырь обеспечивает сорбцию и выведение частиц тяжелых металлов из организма человека. 8 з.п. ф-лы, 1 ил., 1 табл. Подробнее
Дата
2019-07-26
Патентообладатели
Бахметьев Артем Олегович
Авторы
Бахметьев Артем Олегович
СПЛАВ НА ОСНОВЕ ТИТАНА / RU 02710407 C1 20191226/
Открыть
Описание
Изобретение относится к области металлургии, а именно к титановым α сплавам, предназначенным для использования в качестве конструкционного высокотехнологичного теплопроводного материала для энергетических силовых и теплообменных установок, авиационной и космической техники, длительно работающих при температурах от -100°С до 450°С. Сплав на основе титана содержит, мас.%: цирконий 20-22, кислород 0,04-0,09, алюминий 0,001-0,01, кремний ≤0,005, железо ≤0,05, хром ≤0,002, никель ≤0,003, углерод ≤0,01, азот ≤0,005, водород ≤0,003; титан - остальное. Физико-механические характеристики сплава при температуре 20°С составляют: σв=530-550 МПа, σ0,2=400-430 МПа, δ≥30%, теплопроводность сплава 15 Вт/(м·K). 3 табл. Подробнее
Дата
2019-07-26
Патентообладатели
"Федеральное государственное унитарное предприятие ""Центральный научно-исследовательский институт конструкционных материалов ""Прометей"" имени И.В. Горынина Национального исследовательского центра ""Курчатовский институт"" "
Авторы
Орыщенко Алексей Сергеевич , Леонов Валерий Петрович , Счастливая Ирина Алексеевна , Третьяков Игорь Валерьевич
Способ определения качества питьевой, природной воды и водной жидкости / RU 02717392 C1 20200323/
Открыть
Описание
Изобретение относится к аналитической химии и предназначено для определения некоторых показателей качества питьевой и природной воды и водной жидкости в домашних условиях с применением простых и доступных систем. Заявленный способ определения качества питьевой, природной воды и водной жидкости характеризуется тем, что в качестве средства анализа применяют гидратированные акриламидные полимерные шарики, которые помещают в пробу анализируемой воды объемом 20-30 миллилитров, выдерживают 5 часов, вынимают, промакивают салфеткой, измеряют линейкой диаметр, оценивают цвет и прозрачность шарика визуально или применяя доступные средства фотографирования и перевода в цифровое изображение. При этом при диаметре шарика, менее или равном 8 мм, шарик неравномерно/равномерно окрашен, помутнении шарика, появлении жёлтого, голубого оттенка цвета, изменении формы делают вывод о содержании в водной жидкости искусственных/натуральных красителей, завышении показателя общей жёсткости воды от верхней границы нормы, концентрации ионов железа, меди в 30 раз выше нормы, наличии водорастворимых органических соединений, а при разрушении, частичном или полном разрушении и растворении шарика - о присутствии примесей кислого характера, в том числе кислот. Технический результат - разработка способа определения некоторых показателей качества питьевой, природной воды и водной жидкости в домашних условиях. 4 ил., 1 табл. Подробнее
Дата
2019-07-18
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Воронежский государственный университет инженерных технологий"" "
Авторы
Кучменко Татьяна Анатольевна , Харланова Арина Геннадьевна
Антифрикционный сплав на основе цинка-олова-алюминия / RU 02710312 C1 20191225/
Открыть
Описание
Изобретение относится к области металлургии, в частности к антифрикционному сплаву на основе цинка-олова–алюминия, и может быть использовано при изготовлении взрывозащищенной продукции различного назначения. Антифрикционный сплав на основе цинка-олова–алюминия содержит, мас. %: олово - 18,0-20,3; алюминий - 10,5-12,1; медь - 3,8-5,6; кремний - 0, 05-0,075; железо - 0,01-0,5; свинец - 0,01 - 0,02; кадмий -0,012-0,16; цинк – остальное. Сплав характеризуется высокими значениями прочности, относительного удлинения, твердости, а также низкой опасностью пожара и взрыва. 8 ил., 5 пр. Подробнее
Дата
2019-07-16
Патентообладатели
"Открытое акционерное общество ""Взрывозащищенные электрические аппараты низковольтные"" "
Авторы
Вязник Сергей Иванович
Охлаждаемая лопатка газовой турбины / RU 02716648 C1 20200313/
Открыть
Описание
Охлаждаемая лопатка газовой турбины содержит корпус лопатки с входным отверстием, корытом, спинкой, входной и выходной кромками, охлаждающим каналом с перегородками и дефлекторами. На поверхности лопатки выполнены отверстия для подачи охлаждающего воздуха. В охлаждающем канале установлена вставка в виде цилиндрического поворотного клапана. Во входном отверстии установлен лепестковый клапан из материала, обладающего эффектом памяти формы. Цилиндрический поворотный клапан снабжен поворотной составной осью, закрепленной одним концом в корпусе лопатки, а другим концом соединенной с цилиндрическим поворотным клапаном. Поворотная составная ось состоит из секций и выполнена из материала, обладающего эффектом памяти формы. В качестве материала, обладающего эффектом памяти формы, могут быть использованы сплавы на основе железа и никеля. Изобретение направлено на повышение эффективности работы турбины на переменных режимах. 1 з.п ф-лы, 6 ил. Подробнее
Дата
2019-07-16
Патентообладатели
"ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ""Брянский государственный технический университет"" "
Авторы
Кравченко Виктор Александрович , Осипов Александр Вадимович , Фокин Юрий Иосифович
Способ получения термически неупрочняемого конструкционного материала из сплава на основе алюминия с содержанием магния / RU 02706262 C1 20191115/
Открыть
Описание
Изобретение относится к литейному и прокатному производству. Получают термически неупрочняемый конструкционный материал из сплава на основе алюминия, содержащий при следующих соотношениях, мас.%: магний 9,50-10,50, титан 0,01-0,03, бериллий 0,0001-0,005, цирконий 0,05-0,12, скандий 0,18-0,3, марганец 0,3-0,6, никель 0,01-0,05, кобальт 0,01-0,05, алюминий - остальное. Примеси, включающие железо и кремний, не должны превышать 0,08 мас.%. Кристаллизацию проводят во вращающемся кристаллизаторе при гравитационном коэффициенте 120-180, времени нахождения сплава в виде расплава 10-14 с/кг и скорости направленного радиального охлаждения в кристаллизаторе не выше 8°C/с. Слиток подвергают термообработке в течение 2-4 ч при температуре 340-380°C, затем при этой температуре проводят его горячую прокатку до толщины 6 мм за 10-12 проходов со степенью деформации в первом проходе не менее 25% и окончательной температурой подката 310-330°C, затем производят холодную прокатку за 12-14 проходов с окончательным отжигом при температуре 440°C в течение 45 мин с остыванием на воздухе. Техническим результатом является получение конструкционного материала с повышенными служебными свойствами. 1 ил. Подробнее
Дата
2019-07-16
Патентообладатели
"ООО ""Научно-исследовательский центр металлургии"" "
Авторы
Анисимов Дмитрий Олегович , Ткачев Сергей Семенович , Анисимов Олег Владимирович , Осипов Юрий Иванович
ЭЛЕКТРОЛИТ ДЛЯ ЭЛЕКТРООСАЖДЕНИЯ ЦИНК-ЖЕЛЕЗНЫХ ПОКРЫТИЙ / RU 02712582 C1 20200129/
Открыть
Описание
Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении, автомобильной промышленности и других отраслях. Электролит содержит, г/л: цинк сернокислый 10-20, железо (II) сернокислое 10-20, аммоний щавелевокислый 80-100, препарат ОС-20 0,4-0,8 и воду до 1 л, при этом pH составляет 5-6, температура 25-60°С. Техническим результатом изобретения является снижение скорости коррозии цинк-железных покрытий с одновременным снижением экологической нагрузки на очистку сточных вод за счет снижения токсичности. 2 табл. Подробнее
Дата
2019-07-16
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Ивановский государственный химико-технологический университет"" "
Авторы
Шеханов Руслан Феликсович , Гридчин Сергей Николаевич , Мокрецов Никита Евгеньевич
Способ получения хлорида никеля / RU 02711068 C1 20200115/
Открыть
Описание
Изобретение относится к гидрометаллургии цветных металлов, преимущественно к получению солей никеля и может быть использовано для переработки металлических никельсодержащих отходов. Осуществляют обработку измельченных отходов производства катодного никеля железосодержащим раствором хлорида никеля с концентрацией 2-5 г/л железа(III) и 50-230 г/л никеля при температуре 40-90°C с получением раствора хлорида никеля. Обработку ведут при подаче газообразного хлора и поддержании окислительно-восстановительного потенциала в пределах 550-800 мВ до обеспечения плотности раствора 1,52-1,61 г/дм3. Затем проводят очистку раствора хлорида никеля от примесных компонентов путем его нейтрализации карбонатом или гидроксидом никеля до рН=2,5-3,5 при температуре 60-80°C с получением очищенного раствора хлорида никеля и гидратного железистого кека, который растворяют в соляной кислоте с получением раствора хлорного железа. Способ позволяет повысить чистоту получаемого хлорида никеля при снижении энергоемкости, уменьшении числа операций и повышении безопасности. 7 з.п. ф-лы, 5 пр. Подробнее
Дата
2019-07-11
Патентообладатели
"Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр ""Кольский научный центр Российской академии наук"" "
Авторы
Касиков Александр Георгиевич , Кшуманева Елена Сергеевна , Соколов Артем Юрьевич
ЛИТОЙ СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ / RU 02713170 C1 20200204/
Открыть
Описание
Изобретение описывает литой стеклокристаллический материал, содержащий оксиды кремния, магния, алюминия, титана, марганца и имеющий в структуре шпинельные фазы, при этом он дополнительно содержит оксиды кальция, железа (II), железа (III), натрия, калия, хрома, ванадия, серу S2 в соединении Fe2S при следующем соотношении ингредиентов, мас. %: SiO2 43,0-46,0; MgO 12,0-16,0; Al2O3 10,0-17,0; СаО 9,0-15,0; FeO 3,0-7,0; Fe2O3 1,0-1,2; TiO2 0,4-0,8; Na2O 0,3-1,0; K2O 0,33-1,10; MnO 0,20-0,30; Cr2O3 2,4-3,0; V2O5 0,1-0,2; S2- 0,02-0,06 (в соединении Fe2S), при этом его структура содержит шпинельные фазы в составе кристаллических сферолитных составляющих размером 4-7,5 мкм, состоящие из двух фаз: ядра сферолита - шпинелид размером 2-3 мкм и оболочки сферолита - пироксенид размером 2-4,5 мкм, а толщина стеклофазной прослойки между сферолитами составляет 5-7 мкм. Технический результат: получение литого стеклокристаллического материала, обладающего способностью к поглощению кинетической энергии удара и высокой износостойкостью без использования дефицитных, и/или дорогостоящих, и/или токсичных компонентов. 1 ил., 2 табл. Подробнее
Дата
2019-07-11
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Пермский национальный исследовательский политехнический университет"" "
Авторы
Игнатова Анна Михайловна , Игнатов Михаил Николаевич , Верещагин Владимир Иванович
Способ получения наносфер оксида железа (III) / RU 02713594 C1 20200205/
Открыть
Описание
Изобретение относится к технологии получения наночастиц оксида железа (III) α-Fe2O3, который может быть использован в качестве пигмента, катализатора, сенсибилизатора солнечных батарей, эффективного анодного материала химических источников тока, газочувствительного сенсора для определения паров этанола C2H5OH, монооксида углерода CO, водорода H2, композитного адсорбционного материала для очистки сточных вод от водорастворимых красителей. Cпособ получения наночастиц оксида железа (III) α-Fe2O3 включает микроволновое облучение при нагревании водного раствора гексагидрата хлорида железа FeCl3⋅6H2O и соединения, содержащего аммоний-ион, промывание и сушку, при этом в качестве соединения, содержащего аммоний-ион, используют дигидроортофосфат аммония NH4H2PO4 и дополнительно сульфат натрия Na2SO4 при молярном соотношении компонентов, равном FeCl3⋅6H2O:NH4H2PO4:Na2SO4=40:0,25:1, в водном растворе при соотношении т:ж=0,5491: 90 ÷ 110, а микроволновое облучение осуществляют при температуре 200-220°С в течение 5-20 мин с мощностью 17-19 Вт под давлением 10-20 бар при постоянном перемешивании со скоростью 100-300 об/мин. Изобретение обеспечивает получение частиц оксида железа (III) ромбоэдрической сингонии, имеющих сферическую форму диаметром 80 нм простым и технологичным способом. 2 ил., 3 пр. Подробнее
Дата
2019-07-10
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Авторы
Захарова Галина Степановна , Юели Лю
Порошковая проволока для мокрой подводной резки / RU 02722397 C1 20200529/
Открыть
Описание
Изобретение может быть использовано при механизированной и автоматической подводной резке мокрым способом металлических конструкций непосредственно в пресной и морской воде. Порошковая проволока состоит из стальной оболочки и шихты, содержащей порошкообразные компоненты при следующем содержании, мас. %: карбонат железа 50-70, карбонат щелочного металла 20-30, комплексный фторид щелочного металла 10-20. В качестве карбоната щелочного металла шихта содержит соединение или смесь соединений, выбранных из группы карбонатов натрия, калия, лития, цезия. В качестве комплексного фторида щелочного металла шихта содержит соединение или смесь соединений, выбранных из группы гексафторалюминатов натрия, калия, лития, цезия. Мокрая подводная резка порошковой проволокой с шихтой указанного состава позволяет обеспечить глубокое погружение дуги в металл, малую ширину реза, отсутствие шлака и грата на внешней и внутренней поверхности. Порошковая проволока обеспечивает повышение эффективности и качества мокрой подводной дуговой резки сталей за счет интенсификации окисления железа при одновременном увеличении концентрации тепловложения электрической дуги. 2 з.п. ф-лы, 3 табл. Подробнее
Дата
2019-07-09
Патентообладатели
"Общество с ограниченной ответственностью ""Региональный Северо-Западный Межотраслевой Аттестационный Центр"" "
Авторы
Левченко Алексей Михайлович , Паршин Сергей Георгиевич , Антипов Иван Сергеевич
СПОСОБ ПЕРЕРАБОТКИ КОНЦЕНТРАТОВ НА ОСНОВЕ ЖЕЛЕЗА, СОДЕРЖАЩИХ МЕТАЛЛЫ ПЛАТИНОВОЙ ГРУППЫ / RU 02707457 C1 20191126/
Открыть
Описание
Способ переработки концентратов на основе железа, содержащих металлы платиновой группы, включает распульповку концентрата в воде, введение в пульпу окислителя и последующую обработку полученной смеси кислотой. При этом после распульповки концентрата в воде в пульпу вводят хлорат натрия в количестве, необходимом для окисления содержащихся в концентрате железа до степени окисления 2+ и фосфора до степени окисления 5+. Полученную реакционную смесь обрабатывают серной или соляной кислотой до достижения значения рН, равного 1,0 - 0,0, прогревают и отделяют раствор, содержащий соли железа и фосфат-ионы от осадка, содержащего металлы платиновой группы. Технический результат заключается в переведении в раствор основной части содержащегося в концентрате железа без образования при этом вредных и взрывоопасных веществ и концентрировании металлов платиновой группы в отдельном промпродукте. 1 табл., 1 пр. Подробнее
Дата
2019-07-05
Патентообладатели
"Открытое акционерное общество ""Красноярский завод цветных металлов имени В.Н. Гулидова"" "
Авторы
Ильяшевич Виктор Дмитриевич , Лукина Ксения Валерьевна , Герасимова Людмила Константиновна , Кривошеев Никита Олегович , Бархатов Михаил Юрьевич
Мягкая гемостатическая лекарственная форма с наночастицами / RU 02711616 C1 20200117/
Открыть
Описание
Изобретение относится к химико-фармацевтической промышленности, а именно к мягкой гемостатической лекарственной форме. Состав содержит эпсилон-аминокапроновую кислоту в количестве 5,0 г, хлорид железа III – 2,0 г; наночастицы на основе железа Fe3O4 или FеС – 0,1 г, в качестве действующего вещества и полиэтиленгликоль-400 – 74,40 г и полиэтиленгликоль-1000 – 18,60 г в качестве мазевой основы. Изобретение обеспечивает расширение арсенала гемостатических средств. 3 ил., 4 табл. Подробнее
Дата
2019-07-03
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Уральский государственный медицинский университет"" Министерства здравоохранения Российской Федерации "
Авторы
Мельникова Ольга Александровна , Барсукова Юлия Николаевна , Петров Александр Юрьевич , Минин Артём Сергеевич , Устюжанин Александр Владимирович
Способ комплексной переработки алюмосодержащих солевых шлаков / RU 02701319 C1 20190925/
Открыть
Описание
Изобретение относится к способу комплексной переработки алюмосодержащих солевых шлаков, образующихся при производстве вторичного алюминия. Способ включает предварительное дробление и отмывку от солей шлака, содержащего оксид алюминия, затем обработку шлака серной кислотой, отделение фильтрацией полученного раствора от песка, песок промывают, а очищенный раствор подают в кристаллизатор и охлаждают, отделяют кристаллы сульфата алюминия от маточного раствора, в состав которого входит серная кислота, кристаллы сульфата алюминия промывают органическим растворителем, который после регенерации используют в последующих промывочных операциях, а маточный раствор, в состав которого входит серная кислота, используют на последующих стадиях обработки шлака, причем выделившиеся при промывке шлака от солей газы H2, CH4, C2H2 сжигают и используют теплоту сгорания для упаривания солевого раствора и получения кристаллов солей NaCl и KCl, а NH3 используют для получения сульфата аммония, отмытый от солей шлак предварительно очищают от оксидов железа на магнитном сепараторе, а маточный раствор предварительно очищают от примесей сульфатов побочных металлов. Обеспечивается разделение на составляющие реагенты в алюмосодержащем солевом шлаке и повышение качества и количества готовых продуктов из алюмосодержащих солевых шлаков за счет тщательного разделения сырья на составляющие компоненты на каждой стадии технологического процесса. 1 ил. Подробнее
Дата
2019-07-01
Патентообладатели
Баулин Николай Иванович , Катков Александр Иванович , Баранов Анатолий Валентинович , Захаревский Виталий Николаевич
Авторы
Захаревский Виталий Николаевич
НАПРАВЛЕННЫЙ 3D ОТВЕТВИТЕЛЬ НА МАГНИТОСТАТИЧЕСКИХ ВОЛНАХ / RU 02717257 C1 20200319/
Открыть
Описание
Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного ответвителя мощности. Техническая проблема изобретения заключается в создании 3D ответвителя СВЧ-мощности, обеспечивающего возможность вертикальной передачи сигналов в многослойных устройствах с управляемым коэффициентом передачи, в том числе в интегральных магнонных схемах. Технический результат заключается в осуществлении возможности регулирования характеристик распространения магнитостатических волн в широком диапазоне частот в многопортовом режиме. Технический результат достигается тем, что направленный ответвитель на магнитостатических волнах, содержащий основной микроволновод из пленки железо-иттриевого граната, размещенной на подложке из галлий-гадолиниевого граната, микрополосковую антенну для возбуждения магнитостатических волн, расположенную на одном из торцевых концов плёнки железо-иттриевого граната основного микроволновода, согласно изобретению, он содержит дополнительные микроволноводы, каждый из которых выполнен в виде плёнки железо-иттриевого граната, размещенной на подложке из галлий-гадолиниевого граната, а также содержит микрополосковые антенны для приёма магнитостатических волн, при этом дополнительные мкироволноводы размещены на основном микроволноводе перпендикулярно его поверхности, а каждая из антенн для приема магнитостатических волн расположена на торцевом конце каждой плёнки железо-иттриевого граната дополнительных микроволноводов. Ширина пленки железо-иттриевого граната дополнительных микроволноводов составляет от 50 до 500 мкм, толщина пленки - от 1 до 10 мкм, а расстояние (зазор) между дополнительными микроволноводами составляет от 10 до 50 мкм, длина плёнки железо-иттриевого граната основного микроволновода составляет от 100 до 500 мкм. 1 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-06-28
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского"" "
Авторы
Садовников Александр Владимирович , Никитов Сергей Аполлонович , Мартышкин Александр Александрович
Способ диагностики степени дисплазии шейки матки / RU 02704966 C1 20191101/
Открыть
Описание
Изобретение относится к медицине, а именно к гинекологии, и может быть использовано для диагностики степени дисплазии шейки матки. Способ диагностики степени дисплазии шейки матки, заключающийся в том, что проводят гистологическое исследование биоптатов шейки матки и дополнительно проводят иммуногистохимическое исследование эксцизионных биоптатов шейки матки с определением маркеров Ki-67, р16 INK4a, Cyclin D1 в покровном эпителии и в железах, и при значениях Ki-67 - 11-20% в покровном эпителии, 7-13% в железах, р16 INK4a - 4-8% в покровном эпителии, 0% в железах, Cyclin D1 - 10-11% в покровном эпителии и железах - диагностируют стадию CIN 1; при значениях Ki-67 - 55-75% в покровном эпителии, 73-91% в железах, р16 INK4a 50-60% в покровном эпителии, 80-95% в железах Cyclin D1 - 8-9% в покровном эпителии и железах - диагностируют стадию CIN II; при значениях Ki-67 - 85-95% в покровном эпителии, 92-95% в железах, р16 INK4a - 70-80% в покровном эпителии, 96-98% в железах, Cyclin D1 - 5-6% в покровном эпителии и железах - диагностируют стадию CIN III, при значениях Ki-67 - 96-100% в покровном эпителии, 96-100% в железах, р16 INK4a - 96-100% в покровном эпителии, 99-100% в железах, Cyclin D1 - 3-4% в покровном эпителии и железах - диагностируют стадию CIS. Вышеописанный способ позволяет точно провести диагностику степени дисплазии шейки матки. 2 табл., 4 пр. Подробнее
Дата
2019-06-27
Патентообладатели
"Государственное автономное учреждение Ростовской области ""Областной консультативно-диагностический центр"" "
Авторы
Бурцев Дмитрий Владимирович , Димитриади Татьяна Александровна , Холодная Татьяна Олеговна
Способ переработки золотосодержащих неорганических материалов (варианты) / RU 02706261 C1 20191115/
Открыть
Описание
Изобретение относится к пирометаллургической переработке материалов, содержащих благородные металлы и сплавы, в частности золотосодержащие. Способ переработки золотосодержащих неорганических материалов включает их расплавление с флюсом, содержащим смесь обезвоженной буры, кальцинированной соды и стекла или кварцевого песка, обеспечивающим связывание примесей в расплавленном золотосодержащем неорганическом материале, окисление полученного расплава, нагретого до 1100-1200°С, введением в расплав достаточного количества смеси нитрата аммония с сульфатом железа до завершения полного окисления примесей. После этого переливают окисленный расплав в нагретую футерованную изложницу, установленную в роторе центрифуги, поддерживают температуру расплава в пределах 1200-1250°С, а затем осуществляют вращение изложницы с расплавом со скоростью, создающей гравитационный коэффициент Kg=200-210, при скорости охлаждения залитого расплава не более 10°С/мин. Вращение изложницы прекращают при завершении кристаллизации расплава с температурой ниже температуры солидус. Способ позволяет упростить процесс в части проведения равномерного окисления расплава. 2 н. и 2 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-06-26
Патентообладатели
Куропаткина Юлия Викторовна
Авторы
Куропаткина Юлия Викторовна , Анисимов Дмитрий Олегович , Ткачев Сергей Семенович
МАГНИТНАЯ ГРАНУЛИРОВАННАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ И СПОСОБ ЕЁ ИСПОЛЬЗОВАНИЯ ДЛЯ ИНТЕЛЛЕКТУАЛЬНОГО ЦЕМЕНТИРОВАНИЯ СКВАЖИН ОБСАДНОЙ КОЛОННЫ / RU 02712585 C1 20200129/
Открыть
Описание
Изобретение относится к полимерным соединениям, в частности к магнитной гранулированной полимерной композиции, которую можно использовать для интеллектуального цементирования скважин. Описана магнитная гранулированная полимерная композиция для цементирования на основе эластичной полимерной матрицы из натурального и/или синтетического каучука, выбранного из ряда стиролбутадиенового, бутилкаучука, силиконового, хлорвинилового, бутилакрилового, полиуретанового каучука, сополимеров этих каучуков с добавкой портландцемента, и магнитного наполнителя в виде магнитного порошка с размером частиц 1-100 мкм, такого как железо-неодим-бор NdFeB, и/или магнетит Fe3O4, и/или порошковое железо, и/или магнитные сплавы железа - железо-кобальт, и/или железо-никель, и/или пермаллоевый сплав, при следующем содержании компонентов, мас. ч.: магнитный наполнитель 5-40, портландцемент 1-50, полимерная матрица 100 и дополнительно углеродные или базальтовые волокна 0-50, обеспечивающая получение следующих характеристик - плотность магнитной полимерной композиции 1-3,5 г/см3, упругость 0,5-30 МПа, намагниченность остаточная 1-30 Гс⋅см3/г с рабочей температурой от -50 до +200°С. Также описан способ для интеллектуального цементирования скважин. Технический результат: повышение качества цементирования скважины. 2 н. и 3 з.п. ф-лы, 5 ил., 4 табл., 14 пр. Подробнее
Дата
2019-06-25
Патентообладатели
Кульчицкий Валерий Владимирович , Селезнев Денис Сергеевич
Авторы
Кульчицкий Валерий Владимирович , Селезнев Денис Сергеевич