Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
УСТРОЙСТВО ДЛЯ ТЕРМОИМПЛОЗИОННОЙ ОБРАБОТКИ НЕФТЯНЫХ СКВАЖИН / RU 02721544 C1 20200520/
Открыть
Описание
Изобретение относится к устройствам для обработки продуктивного пласта и может быть использовано для повышения производительности нефтяных скважин. Устройство для термоимплозионной обработки нефтяных скважин включает воздушную камеру с атмосферным давлением и заглушку, состоящую из коаксиально расположенных переходника и корпуса сгораемого элемента. Переходник снабжен внутренним опорным элементом, разделяющим его на две части, в одной из частей на опорном элементе жестко закреплен корпус сгораемого элемента, снаряженный монолитным газогенерирующим при сгорании композиционным материалом, состоящим из смеси аммиачной селитры гранулированной марки Б, катализатора, горючего связующего включающего, мас.%: эпоксидную смолу марки ЭД-20-76; пластификатор марки ЭДОС - 8; агидол марки АФ-2М - 16, и воспламенитель, срабатывающий от электрической спирали. Внутренний опорный элемент переходника выполнен в виде кольца, жестко закрепленного на его поверхности, при этом часть, обращенная к воздушной камере, открыта, а газогенерирующий композиционный материал в качестве катализатора содержит феррат калия, при следующем соотношении компонентов, мас.%: аммиачная селитра гранулированная марки Б - 71,0-73,0; феррат калия - 1,0-3,0; горючее связующее - 24,0-28,0. Техническим результатом является повышение надежности и эффективности работы устройства за счет обеспечения его герметичности и стабильности процесса горения композиционного материала при упрощении его конструкции. 2 ил. Подробнее
Дата
2019-12-31
Патентообладатели
Садыков Марат Ильгизович
Авторы
Садыков Марат Ильгизович
Органоминеральное гранулированное удобрение / RU 02724698 C1 20200625/
Открыть
Описание
Изобретение относится к сельскому хозяйству. Органоминеральное гранулированное удобрение содержит органический компонент - помет птиц и минеральный компонент - природную минеральную составляющую, причем в качестве птичьего помета содержит биологически переработанный птичий помет с влагопоглощающим материалом с использованием консорциума штаммов Bacillus subtilis В-168, Bacillus mycoides В-691, Bacillus mycoides B-46, Streptococcus thermophilus B-907, Candida tropicalis Y-1520, Candida utilis Y-2441 в количестве 1⋅108-1⋅109 клеток в 1 мл на 1 т птичьего помета, дополнительно содержит фульвовую кислоту, а в качестве природной минеральной составляющей оно содержит термоактивированную природную кремнистую цеолитсодержащую породу (КЦП). Все компоненты взяты при определенном соотношении. Изобретение позволяет уменьшить количество органоминерального удобрения, вводимого в почву, до 800 кг/га и увеличить срок его службы за счет пролонгирующего действия до 4-5 лет. 7 табл., 3 пр. Подробнее
Дата
2019-12-20
Патентообладатели
"ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ ""НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ""ЗЕОЛ"" "
Авторы
Кулагина Елена Михайловна , Багаутдинов Фаниль Фиргатович , Галяметдинов Юрий Геннадьевич , Громова Евгения Юрьевна
СПОСОБ ОБРАБОТКИ КРЕПКИХ АЛКОГОЛЬНЫХ НАПИТКОВ / RU 02724373 C1 20200623/
Открыть
Описание
Изобретение относится к сорбционной очистке алкогольсодержащих напитков. Способ характеризуется пропусканием через последовательно расположенные три слоя гранулированных сорбционно-фильтрующих материалов, а именно: высокоактивного активированного каменноугольного угля, активированного косточкового угля, импрегнированного серебром, ионообменной смолы на основе фосфата циркония, при скорости прохождения в первом из вышеуказанных слоев 25-50 дал/час на 1 кг сорбента при дальнейшем соотношении скоростей прохождения на 1 кг сорбционно-фильтрующего материала в каждом слое соответственно 1:1,24:0,64. Изобретение позволяет улучшить органолептические свойства крепких алкогольных напитков в части приобретения ими благородного вкуса и аромата. 1 з.п. ф-лы, 1 ил., 5 пр. Подробнее
Дата
2019-10-22
Патентообладатели
"Общество с ограниченной ответственностью Научно-производственное предприятие ""Технофильтр"" "
Авторы
Тарасов Александр Валентинович , Скорняков Артем Павлович , Тюрников Роман Сергеевич
Способ обесфторивания воды / RU 02711741 C1 20200121/
Открыть
Описание
Изобретение относится к водоочистке. Способ обесфторивания воды включает фильтрацию воды через фильтрующую конструкцию цилиндрической формы, в которой расположена система, состоящая из слоя диоксида кремния толщиной 5 см, слоя гранулированного активированного угля толщиной 10 см и слоя сорбента толщиной 0,5 см. Сорбент включает материал на основе бактериальной целлюлозы, модифицированной нанослоем оксида алюминия Al2O3. Изобретение позволяет удалить ионы фтора из природной и водопроводной воды, обеспечить повышенную адсорбционную емкость и безопасность обесфторивания. 1 з.п. ф-лы, 4 ил. Подробнее
Дата
2019-10-01
Патентообладатели
Ревин Виктор Васильевич , Долганов Александр Викторович , Сенин Петр Васильевич
Авторы
Ревин Виктор Васильевич , Долганов Александр Викторович , Сенин Петр Васильевич
Многослойный материал на основе вспененного вторичного полиэтилентерефталата и способ его производства / RU 02710907 C1 20200114/
Открыть
Описание
Изобретение относится к многослойному материалу, предназначенному для получения упаковочного изделия для хранения в условиях окружающей среды и к способу его получения. ! Многослойный материал получен на основе вспененного вторичного полиэтилентерефталата и включает печатный слой, слой вспененного вторичного полиэтилентерефталата или слой вспененного вторичного полиэтилентерефалата, соединенный со слоем не вспененного вторичного полиэтилентерефталата, с плотностью от 100 до 900 кг/м3, с характеристической вязкостью от 0,5 до 1,0 дл/г, а также слой полиэтилена или сополимера полиэтилена, или сополимера полиэтилентерефталата. Способ получения многослойного материала заключается в том, что отходы полиэтилентерефталата моют, очищают, затем дробят до фракций размером от 1 до 20 мм и сепарируют по видам полимеров и по цвету, далее осуществляют расплавку полиэтилентерефталата и последующую экструзию расплава полиэтилентерефталата. Затем проводят поликонденсацию полиэтилентерефталата в жидкой фазе под действием вакуума. Получают гранулированный полиэтилентерефталат с характеристической вязкости от 0,5 до 1,0 дл/г. Далее проводят экструзию гранулированного полиэтилентерефталата с одновременной подачей азота и/или углекислого газа. Затем расплав полиэтилентерефталата вспенивают, после чего вспененный вторичный полиэтилентерефталат охлаждают и каландрируют до толщины от 200 до 1000 мкм. На слой вспененного вторичного полиэтилентерефталата или на слой вспененного вторичного полиэтилентерефталата с экструзионным слоем не вспененного вторичного полиэтилентерефталата наносят слой полиэтилена либо сополимера полиэтилена, либо сополимера полиэтилентерефталата. Полученный материал термостатируют и на наружную поверхность наносят печатный слой. Технический результат заключается в создании простого в производстве и пригодного для использования многослойнного материала на основе вспененного вторичного полиэтилентерефталата, полученного из отходов полиэтилентерефталата. 2 н. и 11 з.п. ф-лы, 11 ил. Подробнее
Дата
2019-07-29
Патентообладатели
Расторгуев Дмитрий Сергеевич , Никитенко Сергей Сергеевич , Циркулев Михаил Валерьевич
Авторы
Расторгуев Дмитрий Сергеевич , Никитенко Сергей Сергеевич , Циркулев Михаил Валерьевич
Способ получения гранулированного материала для очистки и обеззараживания питьевой воды и гранулированный материал, полученный этим способом / RU 02703162 C1 20191015/
Открыть
Описание
Предложен способ получения гранулированного материала для очистки и обеззараживания питьевой воды, включающий стадию смешения сорбирующих и обеззараживающих веществ и полимерного связующего и стадию термического сжатия исходной смеси, отличающий тем, что в качестве сорбирующего вещества используют активированный уголь с йодным числом более 1000 мг/г, а стадию термического сжатия исходной смеси мелкодисперсных сорбирующих и обеззараживающих веществ и полимерного связующего проводят методами экструзии или горячего спекания при температуре на (10-40)°С выше температуры размягчения полимерного связующего и при сжатии смеси, составляющей (12-25)%, при соотношении активированный уголь:обеззараживающее вещество:полимерное связующее (0,1-1):(74-84,9):(10-25) мас. %. с последующим дроблением полученного пористого блочного материала и его фракционированием. В результате получают гранулированный материал с размером гранул (0,3-2,0) мм, с пористостью в гранулах - (1-5) мкм. Технический результат: получен высокопористый гранулированный материал для очистки и обеззараживания питьевой воды с высокими эксплуатационными характеристиками по очистке воды до 96% на протяжении повышенного ресурса выделения в воду катионов серебра, достигающего 45000 объемов воды на 1 объем материала. Предлагаемое изобретение может найти применение в напорных и безнапорных фильтрах для очистки воды. 2 н. и 5 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-07-25
Патентообладатели
"Акционерное общество ""БВТ БАРЬЕР РУС"" "
Авторы
Маслюков Александр Петрович , Сапрыкин Виктор Васильевич , Маслюков Владимир Александрович , Печкуров Александр Николаевич , Подобедов Роман Евгеньевич , Брехова Анна Сергеевна , Йоханн Юрген
Способ получения гранулированного материала для очистки и минерализации питьевой воды и гранулированный материал, полученный этим способом / RU 02703157 C1 20191015/
Открыть
Описание
Предложен способ получения гранулированного материала для очистки и минерализации питьевой воды, включающий стадию смешения сорбирующих, минерализующих веществ и полимерного связующего и стадию термического сжатия исходной смеси и отличающийся тем, что в качестве сорбирующего вещества используют активированный уголь с йодным числом более 1000 мг/г, а стадию термического сжатия исходной смеси мелкодисперсных сорбирующих, минерализующих веществ и полимерного связующего проводят методами экструзии или горячего спекания при температуре на 10-40°С выше температуры размягчения полимерного связующего и при сжатии смеси, составляющей 12-25%, при соотношении активированный уголь : минерализующее вещество : полимерное связующее 5-50:35-85:10-25 мас.%, с последующим дроблением полученного пористого блочного материала и его фракционирования. В результате получают гранулированный материал с размером гранул 0,3-2,0 мм с пористостью в гранулах - 1-5 мкм. Технический результат: получен высокопористый гранулированный материал для очистки и минерализации питьевой воды с высокими эксплуатационными характеристиками по очистке воды до 96% на протяжении повышенного ресурса, достигающего 10000 объемов минерализованной воды на 1 объем материала. Предлагаемое изобретение может найти применение в напорных и безнапорных фильтрах для очистки воды. 2 н. и 5 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-07-25
Патентообладатели
"Акционерное общество ""БВТ БАРЬЕР РУС"" "
Авторы
Маслюков Александр Петрович , Сапрыкин Виктор Васильевич , Маслюков Владимир Александрович , Печкуров Александр Николаевич , Подобедов Роман Евгеньевич , Брехова Анна Сергеевна , Йоханн Юрген
Композиционная сырьевая смесь для изготовления дорожных покрытий / RU 02712215 C1 20200127/
Открыть
Описание
Изобретение относится к строительным материалам и может быть использовано в дорожном строительстве. Предложена композиционная сырьевая смесь для изготовления дорожных покрытий, содержащая (в мас.%): промышленный отход металлургического производства - доменный основной гранулированный шлак (46-49), органоминеральную добавку - комплексную добавку, состоящую из «Линамикс ПК» (1-3) и битумной эмульсии (4-6), и кремнеземсодержащий компонент - гидроотвальную низкокальциевую буроугольную золу ТЭС (44-47). Технический результат - снижение пористости и повышение прочности и значений коэффициентов водостойкости, гидравличности и конструктивного качества получаемого материала. 2 табл., 4 пр. Подробнее
Дата
2019-07-25
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Тульский государственный университет"" "
Авторы
Александров Александр Владимирович , Рябов Геннадий Гаврилович , Качурин Николай Михайлович
КОМПОЗИЦИОННАЯ КЕРАМИЧЕСКАЯ СМЕСЬ / RU 02720340 C1 20200429/
Открыть
Описание
Изобретение относится к строительным материалам и может быть использовано при производстве керамических строительных материалов, например, для кирпича. Керамическая смесь содержит кембрийскую глину, гранулированный шлак фракций 0,6-5 мм, стеклянные микросферы фракций 15-200 мкм и нефтезагрязненный грунт с содержанием нефтепродуктов до 14%, при следующем соотношении компонентов, мас. %: кембрийская глина 59,0-64,0; указанный гранулированный шлак 24,0-25,0; указанные стеклянные микросферы 6,0-7,0; указанный нефтезагрязненный грунт 6,0-9,0. Повышается предел прочности при сжатии и изгибе без увеличения средней плотности изделия, утилизация нефтезагрязненного грунта. 3 табл. Подробнее
Дата
2019-07-19
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Петербургский государственный университет путей сообщения Императора Александра I"" "
Авторы
Шредник Наталия Александровна , Масленникова Людмила Леонидовна , Карандашова Наталья Алексеевна , Ключеров Святослав Валерьевич , Супелюк Татьяна Мирославовна , Зеленина Екатерина Олеговна
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПЕНОБЕТОНА / RU 02713291 C1 20200204/
Открыть
Описание
Изобретение относится к области строительных материалов и может быть использовано для изготовления легкого бетона, используемого в промышленном и гражданском строительстве. Сырьевая смесь для пенобетона содержит, мас.%: портландцемент 46,10-48,60, песок с удельной поверхностью Sуд.=200 м2/кг 11,0-11,52, 25%-ный раствор поликарбоксилатного полимера CP-WRM, представленного сополимером акриловой кислоты и этилового эфира метакриловой кислоты со значением водородного показателя рН 6, плотностью ρ=1,033 г/см3, 0,42-0,46, пеностекло гранулированное с размером частиц 1,25 мм и насыпной плотностью ρ=250 кг/м3 18,48-19,47, воду 21,5-22,45. Технический результат - повышение прочности на сжатие и понижение коэффициента теплопроводности пенобетона. 1 табл., 1 пр. Подробнее
Дата
2019-06-27
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Петербургский государственный университет путей сообщения Императора Александра I"" "
Авторы
Иванова Вера Ефимовна , Сватовская Лариса Борисовна , Сычева Анастасия Максимовна , Соловьёва Валентина Яковлевна , Степанова Ирина Витальевна , Абу-Хасан Махмуд , Соловьёв Дмитрий Вадимович , Козлов Игорь Сергеевич
Термопластичный гранулированный материал (фидсток) и способ его изготовления / RU 02701228 C1 20190925/
Открыть
Описание
Изобретение относится к порошковой технологии, а именно к термопластичным гранулированным материалам (фидстокам) и способам их получения. Может использоваться для изготовления металлических и керамических деталей инжекционным литьем и аддитивным формованием для изготовления сложнопрофильных деталей. Фидсток содержит, об.%: порошок сплава в виде частиц со структурой ядро-оболочка 53-65; пластификатор 0,5-1,5; окисленный парафин 13-25; полимер 15-35. При этом частицы сплава со структурой ядро-оболочка состоят из порошка сплава и модификатора поверхности, взятых в массовом соотношении 1000:1-1000:15. Для получения фидстока получают частицы сплава со структурой ядро-оболочка из порошка сплава, затем перемешивают полученные частиц сплава со связующим и проводят экструзию полученной смеси. Обеспечивается высокая плотность и микротвердость изготовленных из фидстока деталей. 2 н. и 11 з.п. ф-лы, 12 ил., 1 табл., 4 пр. Подробнее
Дата
2019-06-17
Патентообладатели
"Общество с ограниченной ответственностью ""Передовые порошковые технологии"" "
Авторы
Глазкова Елена Алексеевна , Первиков Александр Васильевич , Родкевич Николай Григорьевич , Топорков Никита Евгеньевич , Мужецкая Светлана Юрьевна , Дудина Лидия Владимировна
Способ получения гранулированной металлопорошковой композиции (фидстока) и композиция, полученная данным способом / RU 02718946 C1 20200415/
Открыть
Описание
Изобретение относится к области обработки металлических порошков, а именно к получению гранулированных материалов (фидстоков), используемых для получения металлических изделий методом инжекционного формования/литья под давлением и аддитивного производства. Проводят деагломерацию и микрокапсуляцию частиц бимодального металлического порошка, содержащего наночастицы размером менее 100 нм и микрочастицы размером не более 5 мкм, при содержании наночастиц в смеси не более 20 мас.%. Затем осуществляют механическое смешивание микрокапсулированных частиц порошка со связующим, представляющим собой смесь термопластичного полимера и пластификатора. Смесь нагревают и экструдируют с получением гранул, содержащих бимодальный металлический порошок, микрокапсулирующее органическое вещество, пластификатор и термопластичный полимер при следующем соотношении компонентов, мас. %: бимодальный металлический порошок 85-95; микрокапсулирующее органическое вещество 0,5-1,5; пластификатор 0,1-1,5; термопластичный полимер 2-14. Обеспечивается равномерное распределение нано- и микрочастиц в объеме гранул, текучесть в интервале температур 115-160°C, снижение температуры спекания и плотность спеченных деталей не менее 0,95 от теоретической плотности. 2 н. и 6 з.п. ф-лы, 5 ил., 5 пр. Подробнее
Дата
2019-06-17
Патентообладатели
Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук
Авторы
Глазкова Елена Алексеевна , Первиков Александр Васильевич , Родкевич Николай Григорьевич , Лернер Марат Израильевич , Торопков Никита Евгеньевич
Способ получения гранулированных материалов / RU 02711631 C1 20200117/
Открыть
Описание
Техническое решение относится к химической технологии, в частности к способам получения гранулированных материалов из расплавов и растворов, и может найти применение в химической и других отраслях промышленности. Предлагаемое техническое решение позволяет повысить качество получаемого гранулированного продукта и производительность процесса гранулирования расплава за счет контакта капель расплава продукта с охлажденной газожидкостной средой. Предлагаемый способ получения гранулированных материалов включает подачу расплава продукта в виде струй, истекающих из калиброванных отверстий с установленными в них иглами в охлажденную газовую среду. Дальнейшее охлаждение и кристаллизация капель расплава продукта происходит в газожидкостной среде, движущейся навстречу им. Температура газожидкостной среды ниже температуры плавления гранулированного материала и составляет (10-30)°С. Окончательное охлаждение гранул до температуры (20-40)°С проводят в псевдоожиженном слое гранулированного материала. Средняя скорость газожидкостной среды в рабочей зоне составляет от 0,5 до 0,8 скорости витания мелких гранул продукта. Скорость воздуха при псевдоожижении гранулированного материала составляет от 3 до 5 скорости начала псевдоожижения гранул продукта. 2 з.п. ф-лы. Подробнее
Дата
2019-05-20
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Алтайский государственный технический университет им. И.И. Ползунова"" "
Авторы
Светлов Сергей Алексеевич
ШИХТА ГРАНУЛИРОВАННАЯ ВАНАДИЙСОДЕРЖАЩАЯ ДЛЯ ОКИСЛИТЕЛЬНОГО ОБЖИГА / RU 02705838 C1 20191112/
Открыть
Описание
Изобретение относится к области металлургии, а именно к ванадийсодержащей шихте для окислительного обжига, и может быть использовано при получении ванадиевой продукции. Шихта содержит в качестве ванадийсодержащего материала тонкомолотый конвертерный ванадиевый шлак с содержанием дисперсного железа 0,5-2,5%, в качестве связующего - раствор, включающий техническую оборотную воду от сгущения и фильтрации пульпы, образующейся при мокром помоле конвертерного ванадиевого шлака с реагентной кальцийсодержащей добавкой, и оборотную воду от нейтрализации сливных вод после гидролитического осаждения оксидов ванадия, при следующем соотношении компонентов, мас. %: конвертерный ванадиевый шлак основа; реагентная кальцийсодержащая добавка 4-12 и связующее 6-22, при этом соотношение упомянутых оборотных вод в связующем составляет 1:(0,01-0,50). Изобретение позволяет создать гранулы с необходимой прочностью в сыром состоянии и возможностью приобретать высокопористую проницаемую структуру в процессе их термической обработки, позволяющей стабилизировать окислительный обжиг шихты в гранулированном виде, и достичь более высоких показателей по вскрытию и извлечению ванадия, сняв при этом проблему, связанную с пылевыносом. 3 з.п. ф-лы, 3 табл. Подробнее
Дата
2019-05-06
Патентообладатели
"Акционерное общество ""ЕВРАЗ Ванадий Тула"" "
Авторы
Ильинских Александр Анатольевич , Черных Дмитрий Петрович , Чуканов Андрей Альбертович , Полищук Алексей Васильевич , Беликова Ольга Васильевна , Шаповалов Александр Сергеевич
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ШЛАКА / RU 02706273 C1 20191115/
Открыть
Описание
Изобретение относится к области металлургии и может быть использовано при переработке жидких металлургических шлаков для получения строительных материалов различного назначения. Для получения гранулированного шлака осуществляют грануляцию в водной среде в присутствии сорбента, представляющего собой ферро-глиноземистый кальциевый состав: Fe2O3 35-50%; Al2O3 15-20%; СаО 8-11%; SiO2 8-11%; Na2O + K2O 2-10%. Обеспечивается сокращение образования парниковых газов, повышение технологических свойств продукта. 1 ил., 4 пр. Подробнее
Дата
2019-03-27
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Санкт-Петербургский горный университет"" "
Авторы
Бажин Владимир Юрьевич , Лебедев Андрей Борисович , Утков Владимир Афанасьевич , Сивушов Артем Андреевич
УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ НА ИСТИРАНИЕ ГРАНУЛИРОВАННЫХ МАТЕРИАЛОВ / 187909/
Открыть
Описание
Полезная модель относится к области испытательной техники и предназначена для определения стойкости гранулированных материалов к истирающим нагрузкам в интенсивном режиме. Установка содержит плиту, электродвигатель и вращающиеся с его помощью стальные барабаны с истирающими элементами в каждом барабане. Скорость вращения барабанов задают и поддерживают с помощью частотного преобразователя, соединенного с электродвигателем. Вращающий момент при запуске электродвигателя передается на ведущий вал с помощью резинового ролика, расположенного на валу электродвигателя и шкива, закрепленного на ведущем валу. Барабаны располагают способом простой укладки на ведущий и ведомый валы. Технический результат: разработка компактной, простой в использовании установки для определения стойкости к истиранию гранулированных материалов по остатку на сите по ГОСТ 16188-70. 1 ил. Подробнее
Дата
2019-03-21
Патентообладатели
Публичное Акционерное Общество "Нижнекамскнефтехим"
Авторы
Чирков Павел Витальевич, Шарифуллин Рафаэль Ривхатович
СПОСОБ ОБРАБОТКИ КИСЛОГО ГУДРОНА / RU 02709508 C1 20191218/
Открыть
Описание
Изобретение относится к переработке кислых гудронов. Способ обработки кислого гудрона, заключается в нанесении на поверхность гранул микропористой осадочной породы аморфного кремнезема одного или более слоев, состоящих из кислого гудрона, микронизированного материала, содержащего оксид кальция, и микронизированной микропористой осадочной породы аморфного кремнезема. Технический результат – получение топливных гранул, при этом они имеют высокую температуру размягчения (выше, чем 400 градусов Цельсия), что обеспечивает возможность дозирования гранулированного гудрона с помощью системы подачи твердого топлива, также обеспечивается использование топливных гранул в котлах с циркулирующим кипящим слоем. 3 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-03-15
Патентообладатели
Крыжановский Максим Дмитриевич
Авторы
Крыжановский Максим Дмитриевич
ВОЗДУШНО-РЕАКТИВНЫЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ НА ТВЕРДОМ ТОПЛИВЕ И СПОСОБ ЕГО ФУНКЦИОНИРОВАНИЯ / RU 02706870 C1 20191121/
Открыть
Описание
Изобретение относится к силовым установкам летательных аппаратов различного назначения, работающим на твердом топливе (например, синтетическом полимере). Способ организации детонационного горения пиролизных газов в камере сгорания воздушно-реактивного двигателя, при котором для дросселирования реактивной тяги используется продувка реактора-пиролизера с гранулированным твердым топливом высокотемпературными или низкотемпературными газами из газогенератора. Сгорание смеси пиролизных газов с воздухом в камере сгорания происходит в детонационной волне, обеспечивающей поток тепла в реактор-пиролизер из камеры сгорания, достаточный для достижения требуемой скорости образования пиролизных газов на том или ином рабочем режиме, а также достаточный для надежного охлаждения элементов конструкции камеры сгорания за счет эндотермического пиролиза гранулированного твердого топлива. Способ реализован в устройстве, в котором реактор-пиролизер отделен от кольцевой камеры сгорания стенкой, выполненной из материала с высокой теплопроводностью. Внутри реактора-пиролизера расположен теплообменный каркас, выполненный из материала с высокой теплопроводностью и находящийся в тепловом контакте со стенкой, отделяющей реактор-пиролизер от кольцевой камеры сгорания. Гранулированное твердое топливо в реакторе-пиролизере находится в тепловом контакте как со стенкой, отделяющей реактор-пиролизер от кольцевой камеры сгорания, так и с элементами теплообменного каркаса. Изобретение обеспечивает получение продуктов пиролиза с фазовым и химическим составом, требуемым для самоподдерживающегося детонационного горения и надежного охлаждения элементов конструкции камеры сгорания. 2 н. и 1 з.п. ф-лы, 1 ил. Подробнее
Дата
2019-02-25
Патентообладатели
"Общество с ограниченной ответственностью ""Новые физические принципы"" "
Авторы
Фролов Сергей Михайлович , Аксёнов Виктор Серафимович , Шамшин Игорь Олегович , Набатников Сергей Александрович , Авдеев Константин Алексеевич , Шулакова Надежда Сергеевна
Способ производства асфальтобетонной смеси / RU 02714409 C2 20200214/
Открыть
Описание
Изобретение относится к строительству автомобильных дорог, а именно к области производства дорожно-строительных материалов, и может быть использована для строительства и ремонта аэродромных и дорожных покрытий. Способ производства асфальтобетонной смеси включает нагрев минерального наполнителя и асфальтовяжущего, их перемешивание в смесителе. Сначала осуществляют нагрев до рабочей температуры минерального наполнителя, в качестве которого используют рационально подобранную по гранулометрическому составу и объему смесь минеральных материалов, предварительно прошедшую необходимые стадии обработки и по составу соответствующую требуемой асфальтобетонной смеси. Затем асфальтовяжущее, в качестве которого используют гранулированное битумное вяжущее в виде сферических гранул диаметром не менее 10 мм, в большинстве своем отличающихся друг от друга по размеру не более чем на 1,0%, при температуре окружающей среды помещают на поданный в смеситель минеральный наполнитель, с которым перемешивают в течение времени, необходимого для получения однородной асфальтобетонной смеси. Технический результат - повышение эффективности технологического процесса и улучшение качества асфальтобетонной смеси. 1 ил. Подробнее
Дата
2019-02-14
Патентообладатели
Титов Сергей Игоревич
Авторы
Титов Сергей Игоревич
ГРАНУЛИРОВАННЫЙ МАГНИТНЫЙ ПОЛИМЕР И ТАМПОНАЖНАЯ СМЕСЬ ДЛЯ ЦЕМЕНТИРОВАНИЯ ОБСАДНЫХ КОЛОНН НА ОСНОВЕ МАГНИТНОГО ПОЛИМЕРА / RU 02705113 C1 20191105/
Открыть
Описание
Изобретение относится к области создания композиционных материалов, в частности к получению магнитоактивных эластичных композитов (полимеров), предназначенных для изготовления управляемых магнитным полем элементов цементной смеси, а также к методам крепления газо-нефте-вододобывающих скважин при цементировании обсадных колонн на разных этапах строительства и эксплуатации скважины, при необходимости обеспечивая предельно низкие значения флюидопроницаемости тампонирующего материала за эксплуатационной колонной. Технический результат изобретения состоит в получении магнитного полимера и тампонажной смеси, содержащей магнитный полимер, характеризующейся следующими характеристиками: уменьшение трещин застывшего раствора, увеличение эластичности, увеличение адгезии с обсадной колонной, а именно - улучшение эксплуатационных свойств цементного раствора заключается в уменьшении трещин, увеличении эластичности, увеличении адгезии с обсадной колонной за счет добавки в цементный раствор комплексной полимерной добавки в виде частиц полимера, включающих в свой состав магнитные частицы и частицы цемента. Технический результат достигается тем, что предложен гранулированный магнитный полимер для создания композиционных материалов в элементах цементной смеси, состоящий из эластичной полимерной матрицы, магнитного наполнителя и цементной добавки, при этом в качестве полимерной матрицы используют натуральный и/или синтетический каучук, в качестве магнитного наполнителя с размером частиц в интервале 1-100 мкм используют магнитные порошки железо-неодим-бор NdFeB, и/или магнетит Fe3O4, и/или порошковое железо, и/или магнитные сплавы железа - железо-кобальт, и/или железо-никель, и/или пермаллоевый сплав, в качестве цементной добавки - портландцемент при следующем содержании компонентов, мас. ч.: магнитный наполнитель 1-75, портландцемент 1-75, полимерная матрица - 100 и дополнительно углеродные или базальтовые волокна - 0-50, для получения гранул со следующими характеристиками: плотность магнитного полимера 2-3,5 г/см3, упругость 0,5-30 МПа, намагниченность остаточная 1-30 Гс.см3/г с рабочей температурой от -50 до +200°С. 2 н. и 2 з.п. ф-лы, 9 ил., 3 табл. Подробнее
Дата
2019-01-23
Патентообладатели
Селезнев Денис Сергеевич , Степанов Геннадий Владимирович , Шуть Константин Федорович
Авторы
Селезнев Денис Сергеевич , Степанов Геннадий Владимирович , Шуть Константин Федорович