Интеллектуальная собственность

Расширенный поиск
Вид ИС
Предметная область
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО НЕПРЕРЫВНО ОТОЖЖЕНОГО ЛИСТОВОГО ПРОКАТА ИЗ IF-СТАЛИ / RU 02721681 C1 20200522/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству холоднокатаного проката из IF-сталей, который используют в автомобильной промышленности. Для обеспечения уровня свойств, соответствующих сталям марок DC05, DC06 и DC07 по EN 10130, то есть создания кассетной технологии, при сохранении высоких показателей пластичности и штампуемости осуществляют выплавку стали, содержащей, мас. %: С 0,002-0,006, Si 0,005-0,020, Mn - 0,08-0,13, Al - 0,03-0,06, Ti - 0,03-0,08, Fe и неизбежные примеси - остальное, разливку, горячую прокатку с температурой конца прокатки 900-930°С, травление, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в агрегате непрерывного отжига, при этом рекристаллизационный отжиг ведут путем нагрева до 830-840°С для проката с минимальным значением относительного удлинения 39-40% и до 850-860°С для проката с минимальным значением относительного удлинения 42-44%, выдержки и охлаждения до температуры перестаривания, причем температуру начала перестаривания назначают в соответствии с зависимостью Тп.н.≤[920-12,5хδтр..], где Тп.н. - температура начала перестаривания, °С, δтр. - требуемая минимальная величина относительного удлинения, %; 920 и 12,5 - эмпирические коэффициенты, и проводят дрессировку. 3 табл. Подробнее
Дата
2019-12-23
Патентообладатели
"Федеральное государственное унитарное предприятие ""Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина"" "
Авторы
Родионова Ирина Гавриловна , Карамышева Наталия Анатольевна , Зайцев Александр Иванович , Колдаев Антон Викторович , Краснянская Ирина Алексеевна , Степанов Алексей Борисович
Способ извлечения скважинного оборудования / RU 02724709 C1 20200625/
Открыть
Описание
Изобретение относится нефтегазодобывающей промышленности, а именно к способам очистки скважины от отложений, в том числе химическими реагентами, для извлечения скважинного оборудования. Способ включает перед извлечением оборудования прокачку в скважину насосным агрегатом промывочной жидкости, представляющей пресную воду с плотностью, меньшей плотности пластовой воды, через межтрубное пространство в скважинное оборудование и обратно по колонне технологических труб на поверхность Предварительно определяют минимально и максимально допустимые давления для вскрытого пласта для исключения нарушения его целостности. Перед закачкой промывочной жидкости через межтрубное пространство закачкой газа устьевым насосом снижают уровень скважинной жидкости не менее минимально допустимого по давлению на пласт. Пресную воду закачивают с максимально возможным давлением для пласта с обеспечением интенсивного турбулентного потока для кавитационного воздействия на отложения, при необходимости обработку повторяют. При наличии большого количества осадков в скважине предварительно определяют состав осадка, исходя из которого определяют вид реагента, его объем и время реагирования для растворения осадка. После прокачки турбулентного потока, но перед извлечением скважинного оборудования, в межтрубное пространство закачивают выбранный реагент, плотностью ниже плотности пластовой воды и оставляют на время реагирования с работающим или неработающим оборудованием. Упрощается технология, повышается эффективность использования реагентов. Подробнее
Дата
2019-12-02
Патентообладатели
Публичное акционерное общество "Татнефть" имени В.Д. Шашина
Авторы
Оснос Владимир Борисович , Мальковский Максим Александрович , Абакумов Антон Владимирович
СОЛЕНОИДНЫЙ ВЕТРОГЕНЕРАТОР С ЗУБЦОВЫМ СТАТОРОМ / RU 02723540 C1 20200615/
Открыть
Описание
Изобретение относится к области ветроэнергетики, а именно к ветроэнергетическим агрегатам, предназначенным для заряда аккумуляторных батарей и электропитания различных потребителей. Cоленоидный ветрогенератор с зубцовым статором содержит корпус, внутри которого закреплен первый цилиндрический сердечник, внутри которого расположен второй цилиндрический сердечник. Оба сердечника выполнены из ферромагнитного материала и соединены между собой. Торцы одной стороны сердечников выполнены с равномерно распределенными зубцами и пазами одинаковой площади. Зубцы обоих сердечников соосны друг другу. Между сердечниками вдоль оси ветрогенератора расположена неподвижная статорная обмотка соленоидного типа, подключенная к выводам. Вал расположен внутри второго сердечника с возможность вращения в подшипниковых опорах и соединен с ветроколесом. На валу размещен ротор из немагнитного материала в форме диска, на поверхности которого, обращенной к зубцам цилиндрических сердечников, равномерно распределено четное количество постоянных магнитов П-образной формы, их полюса расположены соосно и направлены разнополярно друг другу. Каждый из постоянных магнитов с разнополярно чередующимися полюсами выполнен с возможностью вращения соосно с торцами цилиндрических сердечников. Число зубцов на торцах сердечников равно половине числа постоянных магнитов. Оба цилиндрических сердечника с противоположной относительно ротора стороны имеют гладкие торцы, соосно которым неподвижно прикреплено к корпусу ярмо из немагнитного материала в виде диска, на поверхности которого, обращенной к гладким торцам цилиндрических сердечников, расположено четное число постоянных магнитов П-образной формы, полюса которых расположены соосно и направлены разнополярно друг другу. Число магнитов на ярме равно числу магнитов на роторе, причем каждый из постоянных магнитов прижат к гладким торцам цилиндрических сердечников разнополярно чередующимися полюсами. Вал установлен в подшипниковых опорах, расположенных в торцевой крышке корпуса и в ярме. 5 ил. Подробнее
Дата
2019-11-27
Патентообладатели
федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет»
Авторы
Пустынников Сергей Владимирович
СПОСОБ ОПРЕДЕЛЕНИЯ НЕРАБОТОСПОСОБНОГО ГЕНЕРАТОРНОГО АГРЕГАТА / RU 02715555 C1 20200302/
Открыть
Описание
Использование: в области электроэнергетики для определения неработоспособного генераторного агрегата (ГА) в судовых электростанциях. Технический результат - повышение быстродействия определения неработоспособного ГАЭ. Согласно способу определяют момент, когда неравномерность загрузки генераторных агрегатов выходит за установленные пределы уставки, и момент, когда загрузка одного или нескольких ГА уменьшается, а загрузка другого (других) увеличивается, и при совпадении этих моментов определяют генераторный агрегат (генераторные агрегаты), загрузка которого (которых) уменьшается, как неработоспособный (неработоспособные). 1 з.п. ф-лы, 1 ил. Подробнее
Дата
2019-11-19
Патентообладатели
"ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ ""ФОРПИК СТАНДАРТ СЕРВИС"" "
Авторы
Широков Николай Викторович
Композиция добавки к приработочному маслу для обкатки редукторов / RU 02711593 C1 20200117/
Открыть
Описание
Изобретение относится к составам приработочных масел, содержащих приработочные добавки, используемых для обкатки и приработки сопряжений трения новых и отремонтированных агрегатов силовых передач различных машин и оборудования, например промышленных редукторов. Изобретение касается композиции добавки, содержащей в соотношениях, мас.%: каолин - 6-12; тальк - 4-8; бемит - 2-6; поверхностно-активные вещества - 1,2-1,6; минеральное масло - остальное. Технический результат - сокращение времени приработки трущихся деталей и финансовых затрат. 1 з.п. ф-лы, 1 пр. Подробнее
Дата
2019-11-19
Патентообладатели
"Федеральное государственное бюджетное научное учреждение ""Федеральный научный агроинженерный центр ВИМ"" "
Авторы
Лобачевский Яков Петрович , Комарова Татьяна Александровна , Гвоздев Александр Анатольевич , Баранов Александр Васильевич , Федотов Анатолий Валентинович , Дунаев Анатолий Васильевич
Мобильный роботизированный комплекс фонтанирующих скважин МРК-ФС / RU 02718550 C1 20200408/
Открыть
Описание
Изобретение относится к нефтедобывающей и геологоразведочной отраслям промышленности и предназначено для наведения сборки ПВО на устье фонтанирующей скважины, в том числе горящей, а также ее герметизации и для проведения аварийных работ по подготовке приустьевой зоны фонтанирующей скважины к наведению сборки ПВО. Мобильный роботизированный комплекс состоит из гусеничного шасси с платформой, скрепленной с поперечными балками шасси, захвата трубного, охватывающего обсадную колонну, устройства перемещения и наведения сборки ПВО, энергетической установки на базе двигателя внутреннего сгорания с гидравлическим насосным агрегатом с регулируемой подачей рабочей жидкости, блоков электро- и гидроавтоматики, систем дистанционной связи на базе цифрового радиоканала и командно-информационного кабеля с постами дистанционного управления и технического зрения. При этом платформа оборудована по углам спереди выносными и подъемными шарнирно установленными на осях, а сзади стационарными грузовыми опорами с размещенными в них независимыми гидроцилиндрами подъема платформы шасси и оснащенной системой автоматического горизонтирования ее. Система автоматического горизонтирования состоит из отдельных видеокамер, заключенных в защитные кожухи. Для наведения сборки ПВО на устье фонтанирующей скважины трубный захват прикреплен к передней поперечной балке шасси. Устройство перемещения и наведения сборки ПВО размещено на платформе шасси и содержит платформу направляющую, выполненную из двутавровых балок, закрепленную передним концом посредством стоек к корпусу трубного захвата, а в средней части и задним концом на платформе шасси и несущий узел. Несущий узел обеспечивает транспортирование сборки ПВО к устью скважины и наведение ее на устье. Несущий узел собран из двух колесных тележек, соединенных между собой спереди перемычкой, размещенной сверху, а ближе к задним концам - опорой стяжной с установленной на ее средней части стойкой, выполненной из двух двутавровых балок, верхние концы которых жестко соединены между собой поперечной стяжкой, образуя рамную конструкцию, и с каждой боковой стороны расходящимися к низу, в сторону колесных тележек, двумя укосинами, соединенными между собой продольными перемычками, а нижними концами с колесными тележками. Причем несущий узел оснащен гидроприводными механизмами горизонтального перемещения несущего узла с закрепленной перед ним сборкой ПВО, по платформе направляющей к устью посредством верхних ветвей цепных передач, размещенных между полками двутавровых балок внутри нее, и звенья которых скреплены с тележками несущего узла узлами крепления. Крепление сборки ПВО к несущему узлу выполнено посредством кронштейнов, жестко закрепленных на верхнем и нижнем фланцах сборки ПВО и установленных, каждый, на двух тележках с роликами, размещенными по углам перед двутавровыми балками рамной стойки, а в средней части - за двутавровыми балками и охватывающими их. Трубный захват укомплектован сменными накладками с зубчатой насечкой и оснащен механизмом отключения подачи рабочей жидкости к гидроприводной трансмиссии гусеничного хода шасси на ее движение вперед. Техническим результатом является повышение эффективности наведения сборки ПВО на устье скважины, расширение диапазона функциональных возможностей комплекса. 34 ил. Подробнее
Дата
2019-11-11
Патентообладатели
"Общество с ограниченной ответственностью ""Газпром газобезопасность"" "
Авторы
Соломахин Владимир Борисович , Матвеев Виктор Михайлович , Кузнецов Виктор Генадьевич , Сесёлкин Олег Вячеславович , Петин Владислав Александрович , Сорокин Анатолий Александрович , Щетинин Алексей Александрович , Коновалюк Сергей Николаевич
Способ обработки поверхности заготовки / RU 02723122 C1 20200608/
Открыть
Описание
Изобретение относится к обработке поверхности заготовки при помощи щёточного агрегата. Агрегат выполнен с возможностью приведения во вращательное движение держателя щётки и кольцевой щётки с кругом из щетинок с выступающими наружу щетинками. Вращающиеся щетинки при помощи погружаемого во вращающийся круг из щетинок выполненного с возможностью регулировки средства останова упруго деформируются, так что щетинки после своего высвобождения обрабатывают поверхность заготовки не только в процессе вращения, но и одновременно ударным образом вследствие высвобожденной после прохода средства останова сохранённой кинетической энергии. Средство останова и/или кольцевую щётку регулируют в зависимости от шероховатости поверхности заготовки, в результате чего расширяются технологические возможности. 3 н. и 7 з.п. ф-лы, 2 ил. Подробнее
Дата
2019-11-11
Патентообладатели
МОНТИ-Веркцойге ГмбХ
Авторы
ХОФСТЕ, Сандер Хендрикус Йоханнес , ДОДДЕМА, Ян Фредерик
НАСОСНАЯ УСТАНОВКА ДЛЯ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ ЭКСПЛУАТАЦИИ ДВУХ ПЛАСТОВ / RU 02722174 C1 20200528/
Открыть
Описание
Изобретение относится к нефтяной промышленности, а именно к насосным установкам для одновременно-раздельной эксплуатации двух пластов скважины. Насосная установка содержит колонну лифтовых труб, кабель, верхний ЭЦН, верхний входной модуль, нижний насосный агрегат, включающий нижний ЭЦН, нижний входной модуль, гидрозащиту и электродвигатель, и пакер между верхним входным модулем и нижним ЭЦН, разделяющий верхний и нижний пласты. На верхнем ЭЦН установлен с образованием верхнего кольцевого зазора кожух. В верхнем входном модуле дополнительно выполнены проточные каналы. Пакер выполнен с центральным отверстием, в котором с образованием нижнего кольцевого зазора проходит вал, передающий вращение от нижнего ЭЦН через верхний входной модуль верхнему ЭЦН. Верхний кольцевой зазор, проточные каналы и нижний кольцевой зазор образуют гидравлическую линию, сообщающую выход нижнего насосного агрегата с колонной лифтовых труб. Технический результат - снижение металлоемкости и уменьшение длины насосной установки, упрощение ее монтажа на скважине. 1 ил. Подробнее
Дата
2019-11-07
Патентообладатели
"Акционерное общество ""Новомет-Пермь"" "
Авторы
Данченко Юрий Валентинович , Перельман Максим Олегович , Пошвин Евгений Вячеславович , Паначев Михаил Васильевич
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ВЫСОКОПРОЧНОГО ПРОКАТА РАЗЛИЧНЫХ КЛАССОВ ПРОЧНОСТИ ИЗ ДВУХФАЗНОЙ ФЕРРИТНО-МАРТЕНСИТНОЙ СТАЛИ / RU 02718604 C1 20200408/
Открыть
Описание
Изобретение относится к области металлургии, а именно к производству холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали, который может быть использован в автомобильной промышленности. Для повышения пластичности, а также расширения технологических возможностей для получения из стали одинакового химического состава проката различных классов прочности 780, 980 и 1180 способ включает нагрев заготовки, горячую прокатку, холодную прокатку и обработку в агрегате непрерывного отжига, причем заготовка получена из стали, содержащей следующие компоненты, мас.%: углерод 0,11-0,13, кремний 0,02-0,40, марганец 2,0-2,2, хром 0,25-0,40, молибден 0,10-0,30, ниобий 0,015-0,025, железо и неизбежные примеси - остальное, в агрегате непрерывного отжига осуществляют нагрев проката до температуры отжига, выдержку, замедленное охлаждение, ускоренное охлаждение до температуры начала перестаривания и перестаривание, при этом для получения проката класса прочности 780 нагрев ведут до 700-720°С, класса прочности 980 нагрев ведут до 770-790°С и класса прочности 1180 нагрев ведут до 730-750°С, а скорость движения проката в агрегате непрерывного отжига для классов прочности 780 и 1180 назначают в зависимости от толщины полос в соответствии с зависимостью V=(80-20h)±10, где V - скорость движения проката, м/мин, h - толщина проката, мм, 80 и 20 - эмпирические коэффициенты, м/мин, для проката класса прочности 980 - в соответствии с зависимостью V=(140-40h)±200, где V - скорость движения полосы, м/мин, h - толщина проката, мм, 140 и 40 - эмпирические коэффициенты, м/мин. 2 табл. Подробнее
Дата
2019-11-05
Патентообладатели
"Публичное акционерное общество ""Магнитогорский металлургический комбинат"" "
Авторы
Павлов Александр Александрович , Денисов Сергей Владимирович , Углов Владимир Александрович , Родионова Ирина Гавриловна , Бакланова Ольга Николаевна , Карамышева Наталия Анатольевна , Чиркина Ирина Николаевна , Телегин Вячеслав Евгеньевич , Лукьянчиков Дмитрий Юрьевич , Андреев Сергей Геннадьевич , Мастяев Антон Вячеславович
КОМПОЗИТНЫЙ СТЕРЖНЕВОЙ КОНСТРУКЦИОННЫЙ ЭЛЕМЕНТ / RU 02724035 C1 20200618/
Открыть
Описание
Изобретение относится к области композитных конструкций и касается высоконагруженных конструкций из полимерных композиционных материалов, в частности стержневых узлов и ферменных агрегатов авиационных конструкций. Композитный стержневой конструкционный элемент содержит трубчатый силовой стержень, слой армирующего волокнистого наполнителя и внешнее защитное покрытие. Армирующий волокнистый наполнитель имеет укладку под углом, близким к 90°, к оси трубчатого силового стержня и скреплен связующим с модулем упругости меньшим, а предельной деформацией большей, чем у связующего трубчатого силового стержня. При этом между слоем армирующего волокнистого наполнителя и внешним защитным покрытием выполнен слой жесткого пенного материала. Повышается ударная прочность конструкции. 4 з.п. ф-лы, 3 ил. Подробнее
Дата
2019-10-30
Патентообладатели
"Федеральное государственное унитарное предприятие ""Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского"" "
Авторы
Шаныгин Александр Николаевич , Кондаков Иван Олегович , Марескин Иван Владимирович , Миргородский Юрий Сергеевич , Чернов Андрей Владимирович
ГИДРОПРИВОД С ДРОССЕЛЬНЫМ УПРАВЛЕНИЕМ / RU 02722767 C1 20200603/
Открыть
Описание
Область применения: гидроприводы машин и агрегатов, работающие с переменной по величине и по направлению нагрузкой на выходном звене гидродвигателя. Гидропривод включает объемный гидродвигатель 1 двухстороннего действия, гидравлический источник питания 2 с напорной 3 и сливной 4 гидролиниями, четырехлинейный дросселирующий гидрораспределитель 5 с пропорциональным электрическим управлением, электронный блок управления 6 которого соединен с системой управления 7 гидропривода, клапан 8 постоянной разности давлений, входной канал и пружинная полость управления которого соединены со сливным каналом гидрораспределителя 5, выходной канал - со сливной гидролинией 4, а полость управления, противоположная пружинной полости, с каналом Т переключающего аппарата 9, и клапан 10 соотношения между разностью давлений во входном и выходном каналах указанного клапана и разностью давлений во входном и выходном каналах клапана 8. Входной канал клапана 10 соединен с напорной гидролинией 3, а выходной канал - с напорным каналом гидрораспределителя 5. Переключающий гидроаппарат 9 выполнен в виде четырехлинейного трехпозиционного гидрораспределителя, электромагниты управления YA1 и YA2 которого соединены с системой управления 7 гидропривода. Технический результат: повышение коэффициента жесткости гидропривода. 1 з.п. ф-лы, 1 ил. Подробнее
Дата
2019-10-29
Патентообладатели
Бодров Валерий Владимирович
Авторы
Бодров Валерий Владимирович , Гойдо Максим Ефимович , Багаутдинов Рамиль Мерсеитович
Кран-манипулятор / RU 02722762 C1 20200603/
Открыть
Описание
Изобретение относится к транспортным машинам для проведения погрузочно-разгрузочных и прочих работ, выполняемых мобильными подъемно-транспортными агрегатами с ограниченной грузоподъемностью. Кран-манипулятор содержит основание, выполненное в виде четырехгранной фермы, на котором шарнирно смонтирована с возможностью поворота посредством двух силовых гидроцилиндров шарнирно-стержневая стрела с грузонесущим органом. Шарнирно-стержневая стрела выполнена в виде фермы, состоящей из треугольных шарнирно-стержневых соединений. Установленные два силовых гидроцилиндра шарнирно-стержневой стрелы расположены под углом α друг к другу, который зависит от размеров конструкции. Два силовых гидроцилиндра имеют общий сферический шарнир с цапфами, соединенными с соответствующими фермами стрелы. Шарнирно-стержневая стрела и ее силовые гидроцилиндры закреплены на основании посредством опорно-поворотных устройств. Стержни всех треугольников конструкции стрелы закреплены без возможности регулирования по длине. Поворот стрелы с грузонесущим органом на определенный угол регулируется работой силовых гидроцилиндров. Подъем и опускание стрелы с грузонесущим органом регулируется двумя параллельными синхронными гидроцилиндрами, которые штоками крепятся к вершинам основания с помощью цилиндрических шарниров, а нижними концами монтируются в вершинах четырехгранной фермы, удерживающей конструкцию стрелы с основанием и силовыми гидроцилиндрами. Передние стойки и задние стойки четырехгранной фермы опираются жестко на парные стойки-упоры, выполненные с возможностью крепления на транспортном средстве. Достигается силовая мощность и жесткость конструкции, увеличивается зона обслуживания крана-манипулятора. 2 ил. Подробнее
Дата
2019-10-22
Патентообладатели
"федеральное государственное бюджетное образовательное учреждение высшего образования ""Волгоградский государственный аграрный университет"" "
Авторы
Бабоченко Наталья Владимировна
Способ установки расширяемой колонны с резьбовыми соединениями / RU 02714542 C1 20200218/
Открыть
Описание
Изобретение относится к нефтегазодобывающей промышленности, а именно к способам строительства скважин при бурении интервалов с зонами осложнения. Способ включает спуск расширяемой колонны с дорном и развальцевателем в скважину на бурильном инструменте, ориентацию расширяемой колонны на интервал установки, создание гидравлического давления в расширяемой колонне до фиксации ее в скважине, отсоединение инструмента от расширяемой колонны. Для окончательного расширения колонны с резьбовыми соединениями используют развальцеватель, придавая вращательно-поступательное движение инструменту, и дорн, придавая поступательное движение инструменту. Развальцеватель выполняют нераздвижным, а ниже развальцевателя на расстоянии, превышающем длину резьбового соединения в 2-3 раза, устанавливают дорн диаметром, меняющимся за счет перепада давления в бурильном инструменте. Для расширения колонны с резьбовыми соединениями дорн спускают до упора развальцевателя в переходный участок, создают давление в дорне такой величины, чтобы усилие при расширении резьбовых соединений расширяемой колонны вверх не превышало усилия на подъем подъемным агрегатом. Расширение резьбовых соединений производят в несколько проходов до свободного прохождения развальцевателя. Далее производят калибрование расширяемой колонны с резьбовыми соединениями развальцевателем. После чего спускают развальцеватель до упора в переходный участок следующего резьбового соединения и производят его расширение аналогичным способом. Повышается эффективность изоляции зоны осложнения за счет применения дорна с диаметром, меняющимся за счет перепада давления для установки расширяемой колонны с резьбовыми соединениями в скважине за счет сохранения их герметичности после расширения, исключения клапана и упрощения технологии при исключении применения утяжеленных бурильных труб, гидродомкрата и якоря. 2 ил. Подробнее
Дата
2019-10-18
Патентообладатели
Публичное акционерное общество "Татнефть" имени В.Д. Шашина
Авторы
Ягафаров Альберт Салаватович , Багнюк Сергей Леонидович
"ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ ""НОРМАС"" N 34" / RU 02720526 C1 20200430/
Открыть
Описание
Изобретение относится к двухтактным двигателям внутреннего сгорания (ДВС) с продолженным расширением. Техническим результатом является повышение эффективности работы двигателя. Сущность изобретения заключается в том, что сборная конструкция двигателя с агрегатами смонтирована с учетом совмещенной координатной сетки, на которой предопределено местоположение центров кругов одного диаметра, расположенных так, что возможно между рядами этих кругов провести только три вида пересечения касательных линий, которые каждый круг из данного числа вписывают в правильный шестигранник, и которая имеет единую точку 00 отсчета, расположенную на оси полого вала 12 отбора мощности, от которой радиально под углом 120° равноудалены три точки 01, 03, 05 расположения осевых центров рабочих объемов цилиндров с крейцкопфным кривошипно-шатунным механизмом (КШМ). На трех других радиальных лучах, которые являются биссектрисами указанных углов, расположены три точки 02, 04, 06 цилиндров с тронковыми КШМ. От этих шести точек 01-06 по радиусу в сторону единой точки 00 отсчета на равноудаленном расстоянии расположены осевые центры валов 07 и 08 шести модулей. Диаметры кругов равны диаметрам поршней 33, 34, цилиндров 13, 16, диаметрам боковых щек 15, между парами которых размещены кривошипы 30, а также диаметрам окружности впадин зубьев шестерен зацепления 31. В состав сборных поршней 34 введен шаровой 3-ходовой кран 23 с возможностью ограниченного поворота при перемещении поршня посредством соединения с шатуном 25, который имеет форму изогнутой пластины двутаврового профиля и при размещении занимает центральное место на шейке кривошипа 30. Также размещено четное количество изогнутых пластин 27 с проушинами на обоих концах, причем длины между центрами проушин и центрами сочленений 41 всех пластин, включая сборный крейцкопфный КШМ, одинаковы. Система воздуховпускных органов выполнена с встроенными 3-ходовыми кранами и с возможностью их синхронного вращения за счет соосного соединения с валом 10. 1 з.п. ф-лы, 11 ил. Подробнее
Дата
2019-10-17
Патентообладатели
Норкин Анатолий Дмитриевич , Маситина Лариса Сергеевна
Авторы
Норкин Анатолий Дмитриевич , Маситина Лариса Сергеевна
Способ подготовки извести к выплавке стали в сталеплавильном агрегате / RU 02720279 C1 20200428/
Открыть
Описание
Изобретение относится к способу подготовки извести к выплавке стали в сталеплавильном агрегате. Способ включает нагрев и обжиг известняка во вращающейся трубной печи, охлаждение получаемой извести и ее подачу в сталеплавильный агрегат, согласно изобретению для обжига используют известняк с общим содержанием марганца не менее 5%, обжиг которого осуществляют коксовым газом с теплотой сгорания не менее 3000 ккал/м3, с расходом 3500-5000 м3/час, в течение не менее 1,5 часов, при этом обжиг осуществляют при температурах 650-700°С в горячей головке печи и 550-650°С в холодной головке печи, полученную известь охлаждают до температуры не более 100°С в течение не более 60 мин. Скорость вращения трубной печи во время обжига известняка составляет 1-1,5 об/мин. Для обжига используют известняк фракционным составом 40-80 мм. Обеспечивается получение кондиционной высокореакционной извести с повышенным содержанием марганца для последующего использования при внепечной обработке в сталеплавильном производстве. 2 з.п. ф-лы, 2 табл. Подробнее
Дата
2019-10-14
Патентообладатели
"Публичное акционерное общество ""Северсталь"" "
Авторы
Галеру Кирилл Егорович , Алексеев Алексей Васильевич , Матанцев Василий Валерьевич , Мезин Филипп Иосифович , Третьяков Антон Евгеньевич
ЭЛЕКТРИЧЕСКИЙ СЛЕДЯЩИЙ ПРИВОД / RU 02724926 C1 20200626/
Открыть
Описание
Изобретение относится к области электротехники и может быть использовано в следящих системах регулирования. Технический результат заключается в увеличении выходной мощности и улучшении технических характеристик привода, а именно: в увеличении момента двигателя и крутизны генератора, снижении пульсации момента и выходного напряжения преобразователя сигналов и уменьшении постоянной времени сглаживающего фильтра. Электрический следящий привод содержит исполнительный агрегат, на валу которого размещены синхронный двигатель, синхронный генератор и датчик положения, выполненный на датчиках Холла, а также схему управления, включающую в себя входное устройство, усилитель мощности с формирователем управляющих сигналов на входе и преобразователь сигналов синхронного генератора, выполненный на однополупериодных выпрямителях тока. Синхронный генератор и преобразователь сигналов синхронного генератора выполнены трехфазными, а синхронный двигатель, усилитель мощности и формирователь управляющих сигналов выполнены двухфазными. Число зубцов в фазовой группе обмотки синхронного генератора выбрано равным n=cmг, где mГ - число фаз генератора, с - целое число; число зубцов в фазовой группе обмотки синхронного двигателя выбрано равным n=cmд, где mД - число фаз двигателя, а число зубцов, выделенных для размещения N датчиков Холла, определяется формулой: n=N=cmгmд. Датчики Холла и секции обмотки синхронного генератора соответствующей фазы размещены на зубцах диаметрально расположенных групп; четные - на базовой, а нечетные - на диаметрально расположенной фазовой группе. 1 з.п. ф-лы, 5 ил. Подробнее
Дата
2019-10-09
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Национальный исследовательский университет ""МЭИ"" "
Авторы
Каржавов Борис Николаевич , Беспалов Виктор Яковлевич , Сидоров Антон Олегович
Способ определения прочности горных пород и устройство для его реализации / RU 02716631 C1 20200313/
Открыть
Описание
Изобретение относится к способу определения физико-механических свойств горных пород по величине продольной упругой деформации сжатия бурильной колонны в момент нанесения удара по забою в процессе ударно-вращательного бурения и устройства его осуществления. Техническим результатом является повышение точности определения прочности горных пород. Способ включает воздействие на горную породу разрушающей нагрузкой и фиксацию показателя прочности горной породы, при этом, фиксируют величину продольной упругой деформации сжатия бурильной колонны в момент нанесения удара по забою, которую определяют согласно приведенному уравнению, а определяемая величина обратно пропорциональна прочности горных пород. Устройство включает буровой агрегат для ударно-вращательного бурения, буровую колонну, долото, измерительный блок, при этом, буровая колонна оснащена соосно установленным в приустьевой зоне буровой колонны датчиком, фиксирующим и передающим упругие деформации сжатия бурильной колонны в момент нанесения удара по забою на приемное устройство, взаимосвязанное с лазерным дальномером, измерительным блоком и компьютером. 2 н.п. ф-лы, 2 ил. Подробнее
Дата
2019-10-02
Патентообладатели
"Федеральное государственное автономное образовательное учреждение высшего образования ""Сибирский федеральный университет"" "
Авторы
Нескоромных Вячеслав Васильевич , Петенёв Павел Геннадьевич , Комаровский Игорь Андреевич , Головченко Антон Евгеньевич , Вяльшин Данис Рустамович , Рябова Арина Алексеевна
СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА НА ВАЛУ ДВИГАТЕЛЯ / RU 02722339 C1 20200529/
Открыть
Описание
Изобретение относится к области измерений крутящего момента на валу двигателя и может быть использовано для определения мощности и (или) коэффициента полезного действия. Задачей предлагаемого изобретения является упрощение технической реализации способа измерения крутящего момента. Техническим результатом является возможность экспресс-определения момента на валу двигателя, насоса и т.п. Способ измерения крутящего момента на валу двигателя характеризуется тем, что используют измерение угла наклона параллельных оси вала прямых, нанесенных на поверхность упругого элемента - торсиона, передающего крутящий момент от двигателя к исполнительному агрегату, фотографируют параллельные линии, используя стробоскопическое освещение с частотой, равной частоте вращения вала, и определяют угол α наклона линий при нагружении торсиона крутящим моментом М, величину которого определяют по формуле где К - коэффициент пропорциональности, определяемый при тарировке в стационарных условиях. 1 ил. Подробнее
Дата
2019-10-02
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Уфимский государственный нефтяной технический университет"" "
Авторы
Галеев Ахметсалим Сабирович , Сулейманов Раис Насибович , Филимонов Олег Владимирович
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК НАСЫПНОГО ГРУНТА / RU 02715588 C1 20200302/
Открыть
Описание
Изобретение относится к строительному грунтоведению и может быть использовано при проектировании искусственных оснований фундаментов зданий и сооружений из насыпного глинистого грунта и в агрономии для качественной оценки агрономической ценности почвы по размерам почвенных агрегатов. Способ определения характеристик насыпного грунта заключается в многоцикловом нагружении-разгружении образца грунта в жесткой цилиндрической камере статическим давлением, начальное значение которого согласовано с давлением на строительной площадке от транспортных механизмов, а конечное значение согласовано с давлением уплотнения на строительной площадке. Регистрации в каждом цикле нагружения-разгружения образца грунта осевой деформации сжатия при нагружении и осевой деформации расширения при разгружении, окончании многоциклового нагружения-разгружения образца грунта при достижении стабильного значения коэффициента упругой работы грунта с допускаемым коэффициентом вариации в 6-ти последних циклах нагружения-разгружения и определении влажности, плотности и плотности минеральных частиц грунта, удельной работы уплотнения и расширения, объемного содержания в грунте упруго деформирующейся воды и воды, участвующей в неупругой части деформации грунта, и объемного содержания минеральных частиц в грунте. Многоцикловое нагружение-разгружение образца грунта производят постоянно возрастающим и постоянно убывающим давлением со скоростью не более 10 кПа/мин с регистрацией значений давления и осевых деформаций сжатия и расширения образца грунта с шагом деформации не более 0,005 мм и времени их проявления. Определяют скорости осевой деформации сжатия и расширения образца грунта по приведенной зависимости. При давлении pI и pI-1, кПа, причем p=Bpt, где t - длительность возрастания или убывания давления, мин, со скоростью Bp≤10, кПа/мин, и по периодически повторяющимся значениям выделяют циклы изменения скорости осевой деформации сжатия и расширения образца, присущие данному грунту, а в числе характеристик грунта дополнительно определяют обобщенный размер структурных элементов уплотненного в заданном диапазоне давлений грунта по приведенной зависимости. Технический результат состоит в обеспечении повышения достоверности и точности результатов испытаний образца грунта при многоцикловом нагружении-разгружении, обеспечении увеличения числа определяемых характеристик грунта. 3 ил. Подробнее
Дата
2019-09-30
Патентообладатели
"Федеральное государственное бюджетное образовательное учреждение высшего образования ""Кубанский государственный аграрный университет имени И.Т. Трубилина"" "
Авторы
Ляшенко Павел Алексеевич , Денисенко Виктор Викторович , Коваленко Владислав Сергеевич , Коломиец Никита Сергеевич
АГРЕГАТ ДЛЯ ОЧИСТКИ ГАЗОВ / RU 02718543 C1 20200408/
Открыть
Описание
Предлагаемый агрегат предназначен для очистки газов от пыли и других твердых частиц в различных отраслях промышленности. Агрегат для очистки газов содержит цилиндроконический корпус, в верхней цилиндрической части которого тангенциально установлено устройство загрузки и соосно устройство выгрузки очищенного газа, а в нижней – устройство выгрузки твердых частиц, соединенное с бункером для приема твердых частиц. В нижней зоне цилиндрической части корпуса размещены опорные впадины цилиндрической формы, контактирующие внутренней поверхностью с соосно установленными цилиндрическими вставками, имеющими устройство поворота и сквозные щели прямоугольного поперечного сечения, в которых размещены с возможностью продольного перемещения отбойные пластины прямоугольной формы, снабженные механизмом перемещения вдоль щелей. В конической части цилиндроконического корпуса на его внутренней поверхности выполнены прямолинейные ручьи, глубина которых уменьшается к устройству выгрузки твердых частиц. На поверхностях отбойных пластин со стороны набегающего потока выполнены выступы, а с противоположной стороны – впадины, причем к торцевым поверхностям отбойных пластин присоединены плоские отсекатели с возможностью перемещения и поворота. Технический результат: простота конструкции, невысокое гидравлическое сопротивление, эффективная очистка загрязненных газов. 4 ил. Подробнее
Дата
2019-09-26
Патентообладатели
"Общество с ограниченной ответственностью ""Промышленные инновации"" "
Авторы
Лебедев Антон Евгеньевич , Гуданов Илья Сергеевич , Власов Валерий Владимирович , Юровская Мария Андреевна , Леонтьев Валерий Константинович , Румянцев Антон Андреевич , Мурашов Анатолий Александрович